AD-A160 355 KAPSE (KERNEL ADA PROGRAMMING SUPPORT ENVIRONMENT)
INTERFACE TEAM PUBLIC REPORT VOLUME 5<U)> NRVAL OCEAN

SYSTEMS CENTER SAN DIEGO CA P R OBERNDORF AUG 85
UNCLASSIFIED NOSC/TD-552-YOL-5 F/6 9/

o

~

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS — 1963~ A

NN rywoe-e o o
AL P SAS - P
v

. *\ %4 9 v 7 PN g~y g . -

AD-A160 355

Technical Document 552

August 1985

KAPSE INTERFACE TEAM
PUBLIC REPORT

Volume V
Patricia A. Oberndorf

Prepared for
ADA Joint Program Office

Naval Ocean Systems Center

San Diego, California 92152-5000
ELECTE

0 0 15 062 |
]S 1 —

r Ah"""*""’“""""’ —¢x~ ‘n M o - -- *p ‘,\ . . {\ \.\ o ‘ ‘f‘f;(‘?.“. .-\".-

Approved for public release; distribution unlimited

*y

U G G e

z‘fv’,‘? m

1

r

N

L(' el

g

i
R
i)
$
A
‘l
b
B}
. NAVAL OCEAN SYSTEMS CENTER SAN DIEGO, CA 92182
¥
. F. M. PESTORIUS, CAPT, USN R.M. HILLYER
. Commander Technical Director
e
- ADMINISTRATIVE INFORMATION
-
This report was compiled by the Software Engineering Technology
Branch (Code 423) of the NAVOCEANSYSCEN for the ADA Joint Program
> Office.
N Released by Under authority of
- R.A. Wasilausky, Head J.A. Salzmann, Jr., Head
Sof tware Engineering Information Systems
Technology Branch Division
l
)
0y
l'
G
PK
K -"-';':4 ‘:&r' -f'i»"i o ..".4 ‘-.'.' : A * k'- '- -; .;';’" .-'f.;-"-' ¥ o it ' e \ -“.t"..'. ' - '- - 0 -y ""\‘W':q'-‘.—"\-v;:.w

)

I O R A N A A A A L O O PR

[W N

.: ‘-;: -n“ < .:_-*‘_s.;.-: » “-.')

UNCLASSIFIED
[-
) REPORT DOCUMENTATION PAGE
‘ T AT SO EXRERY
'y
- UNCLASSIFIED
n 38 STCUNTY CLASSWICATION AUTHORTY T, CRTRBUTION, AVAILABIITY OF REFORY
4 -
d
P » TION/DOWNGRADING Approved for public release; distribution unlimited.
b
' :: |4 PERFORMING ORGANGATION REPORT NUMBERS! MONITONING ORGANCZATION NEFORT NUMBERG)
N Nad
h NOSC TD 552
n ™80 NAME OF PERFORMING ORGANZATION @ OFFICE SYMBOL 7a. NAME OF MONITORING ORGANATION U
7 (i appbicadle)
. Ca Naval Ocean Systems Center Code 423
-. | 6 ADORESS (Ciy. State and 2P Code) To. ADDRESS [CAy, State and DP Codw
o San Diego, CA 92152-5000
‘- 82 NAME OF FUNDING/SPONSORING ORGANGATION ® OFFICE 9. PROCUREMENT INGTRUMENT IOENTIFICATION NUMBER
Y 14 appicedie)
N ADA Joint Program Office
X ¥ 5< ACORESS (Cy. Stace ond 2 Codey 10. OF
A PROGRAM ELEMENT NO. PROJECT MO TABK NG,
- e The Pentagon, 3D139 A““xm‘?‘{n
: Washington, DC 20301-3081 63226F CS22 0 DN288 534
K . EIELG S Ci
) -,
e KAPSE INTERFACE TEAM PUBLIC REPORT, Volume V
o T RRSORAT ACTIORST
L., Patricia A. Oberndorf
' 13s TYPE OF REPORT 13, TWIE COVERED 14 DATE OF REPORT (Your, Morwh, Doy} 16, PAGE COUNT
Finat snom Jul 84 10 Aug 85 August 1985 334
) 16 SUPPLEMENTARY NOTATION
S
A
. ~ 17 COSATI CODES u.mammslcmmnmdmm*nyhuw;
. FIELD GROUP SUB-GROUP CAIS .
. ADA Programming Support Environment (& 7./) A’
SRS
K 19 ABSTRACT (Contiuse on reverse necessery and rdeniiy by Bleck number)
"~ This report gives the minutes of the April 1984, the July 1984. and the October 1984 KAPSE Interface Team. The report
. also includes the details of the Second CAIS Review Meeting, August 1984. M¢ o . = 5+, 4 Pl b _4 La
' ' ~ P -
- B B R A AL Toa e g G as Jua iy
T y SRR T Prs Pt
s R T S P 1Y LN PR R U TN R ST PR IR 3
Lt ‘ / - -~ '
KIS
: 20 OIS TRBUTION, AVARABILITY OF ABSTRACT "21 ABSTRACT SECURITY CLABSWICATION
. [uncLassED UMMTED [same as wer [oncusens UNCLASSIFIED
- — S ———————————
RE (770 NAME OF FESFORER(E WORGUAL 270 TELEPHONE (nchode Aree Code) 33, OFFICE STMOOL
, C Patricia A. Oberndorf (619) 2256682 Code 423
; DD FORM 1473, 84 JAN 8 APR EDMON MAY 8€ UBED UNT EXNAUSTED UNCLASSIFIED
. . CLARSIFICATION
4 '
-
- L A
~ T
'ny
"I""- n'..' ‘.“n'}'.. U RS Thad R . Shte et MU P P

S Y

. ~ e
ety

o

<]

L LT

Catalel

.
e a s

a8 1

LA S R RN PN

LI T DL PL

1 "N N Y

L % Y

14,4

.!v - PRI ST MU b - e "¢ e} ..t .
I I N N A AN I ION, U ¢ SR NN S X VX PR U

SRR

UNCLASSIFIED
SECURITY CLASHIFICATION OF THIS PAGE Then Date Bntered

Y LRl e e e .) e v ' R e et e P e
. L g . RV a &&i‘x&!ﬁh’;"m'.‘J‘Lﬂ\A‘

‘D » .- -~ .
..--:.'x.'-ﬁs:.J

aadl XG0 X3 &N

e

e

() 8 B S-—-— N o ¥

I

G Lif LLE

-~

L...‘-,t'

)
a3

LAY

.

h

v

flafe

A

M s

'.r-ﬁ‘
- [8

I . Immwcr IO" s o o o 8 & 8 ® & s s o s 8 e ®
II. TEAMPROCEEDINGS . . . ¢ ¢ v ¢ v ¢ ¢ ¢ o o « »
KIT-KITIA Minutes 9-12 April 1964

Attendees. . . . ¢« . ¢+t i b e e e s .
Meeting Handouts « + . .
Named Workina Group Members
Plannina Group Members

KIT-KITIA Minutes 16-19 July 1984
Attendees ¢ ¢ 4t bt b e v e e e
Meeting Handouts

KIT-KITIA Minutes 1-4 October 1984
Attendees ¢ ¢+ ¢ ¢ o+t s e s s

ITII. KIT-KITIA DOCUMENTATION « + &
The Second CAIS Review Meeting 2 Auqust 1984

NODE Model Discussion Group
Input/Output Discussion Group

Security Discugsion Growp
Non-Technical Issues Discussion Group . .

Military Standard., Common APSE Interface Set
Contents C h e s e e e e e
Index . . & & ¢ o ¢ 6 vt e e e e e e e
Postcript: GSubmission of Comments

DoD Requirements and Desian Criteria
Contents ¢« ¢ v v v 4 o ¢ ¢ v o o @

CAIS Specification Coordination Report . . .
KITIA Draft Proposal
ADA Paper by Dr. Chris Napjus

Accession For

NTIS GRAXI g
DTIC TAB

Unannounced 0
Justification |
By

Distribution/

Avalilatrility Codes
|Avall and/or
Dist | Special

Al

« o o o @
*® s e P e
« & o e o
* e s v o
®» s ® o
* e o e »
v & o o o
* ¢ o s o

(CAIS). L L L] L)

1-0
2.0
2-1

2-11
2-12
2-16

2-17
2-24
2-26

2-27
2-33

3-0
3-1
3-3
3-9
3-11
3-14

3-19
3-22
3-231
3-247

3-251
3-253

3-275
3-288
3-289

E SECTION |

- INTRODUCTION

o e
v -~

..

»
SEERY
* p

-
-
-
s
p o ‘..
e S
- "'.
* LS
v
.
R A
2
-
.- ‘--
- e
o~ : o
YR
ol)
© o
-' - -
s
..'
.,
.. ‘.-.
< &
..
W A
..
Y
.0 PRl

r}’a

A
Pete s

LANS

1-0

~
@ %

(.

-

LR Y

" W e (ol e a® o™ o e ot oo Ca o o g g Sy 0 W w T AT T A TR T A AT T e AT T T Ty T
LY UAIA A A, RS SRS BYSAHRAT, 15 AS By 5352 AT A 05 A AT VAR ASR SRR VALY

T tve g ke AT G A YK y » AL Ll L Pon e RaWn W S AP gt B o Sl SVl Pl G A i Vi < i iy AR Jtent Sn Bi4gh NG gt P 8.

~Ra

INTRODUCTION

-
ot

This report is the fifth in a series that is being published by the
KAPSE Interface Team (KIT). The first was published as a Naval Ocean Systems
Center (NOSC) Report, TD-209, dated April 1982, and is now available through
the National Technical Information Service (NTIS) for $19.58 hardcopy or
$4.00 microfiche; ask for order nurber AD AllS 599. All subsequent issues of
thepublicreporuarebeingismedasvolunuofmm-ssz.mm
public report is dated October 1982 and is now availabe through NTIS for
$44.58 hardcopy; ask for order mumber AD Al23 136. The third is dated October
1983 and is available through NTIS; ask for order murber AD Al4l 576. The
fourth is dated 3@ April 1984 and will be available through NTIS. This series
of reports serves to record the activities which have taken place to date and
to submit for public review the products that have resulted. The reports are
issued approximately every six months. They should be viewed as snapehots of
the progress of the KIT and its companion team, the KAPSE Interface Team fram
Industry and Academia (KITIA); everything that is ready for public review at 3
a given time is included. These reports represent evolving ideas, so the o
contents should not be taken as fixed or final. -

MEETINGS

Y3)

LMA

" .-
s

During this reporting period the two teams met jointly in July 19684 in “
Toronto, Canada, and in October 1984 in Merrimack, New Hampshire. The -
approved minutes from the April, July and October 1964 meetings are included
in this report. As usual, some of the working groups have also held ~
individual meetings between regular KIT/KITIA meetings. -

-

COMMON APSE INTERFACE SET (CAIS)

Since one of the frequently-heard conments on the CAIS was that there
was insufficient public involvement in its review, it was decided to hold two

more public reviews before the scheduled delivery of a CAIS Version 1 e
document to the AJPO. Version 1.3 of the CAIS was drafted by the CAISWG and -t
distributed in August in conjunction with a second Public Review meeting on
2 August 1984 in Hyannis, Massachusetts, that was held immediately following 5
the AdaTEC meeting there. About 100 pecple participated and provided the »t
CAISWG with many useful coments. A summary of this meeting and the camments
made is included in this report. L]
The following day the key CAIS designers met with Dr. Robert Mathis, "
director of the AJPO. It was decided that, based on the results of the review
the previous day, the work would proceed an schedule with a January 1985 o
delivery to the AJPO of a document which would be put forward for e
standardization by the three services. It was also decided to hold an
additional puhlic review meeting in November in conjunction with the
AdaJUG/SIGAda neeting scheduled for Washington, D.C. In response to this, the o
CAISWG held a special meeting in October 1984 to produce an additional -
revision, CAIS 1.4, of the interface set. That version is included in this -
report. ~3
It was also decided in this time period that the CAIS Version 2 which is
due for delivery to the AJPO in January 1987 should be developed by a -
contractor and that the contractor would be selected campetitively, although -
1-1 3

...................
.........................

[
PR S8

]
Dl bl B Rt

-
~"
-

-
\i
Y
-0

L T T R (RO L LN SR L

e AT A E N e T BV S 9 Lo o W P AT e i L W TR B R b Ay e RN e e

it was determined that parallel campetitive contracts such as were used to
develop Ada would not be pursued. A Request for Procurement was prepared by
NOSC and announced in the Camerce Business Daily in September. Award of that
contract is expected in 198S.

REQUIREMENTS AND DESIGN CRITERIA (RAC)
Warkmt}nm\CMsmnpmdueedawrsimvhid\hubemacceptedby

report. It includes slight revisions of some previously baselined sections, a
significant re-write (more in terms of style than content) of the previously
baselined section an processes and newly baselined versions of the sections

on the database and an the input and output.

This docunent is considered to be quite important to the future work of
the KIT and KITIA as it encampasses the requirements to which Version 2 of
ﬂ:ecnzsutobedssignd It is important that this receive considerable

STANDARDS (STANDWG)

Because of the smll mmber of mambers inmvolved in the Standards Working
Group (STANDWG), z.tmdocidndtomcorpcntextsdnrterwiﬂaﬂatofthe

POLICY DISCUSSIONS

Policy issues have continued to be a subject of extreme concern to the
mambers of the KIT and KITIA. These cuncerns evoked serious discussions at
the July meeting regarding CAIS standardization and how the DaD should
procead derivation of CAIS Version 2. These discussions culminated
in an invitation to Dr. Mathis and the three military service program
managers to join the teams for a discuon at the October meeting. Same of
these concerns and KITIA recammendations with regard to them are reflected in
the KITIA proposal for a second CAIS Version 2 contract, which is included in
this report.

I&T TOOLS
The work to implemant the APSE Interactive Monitor (AIM) has continued
with the acquisition of a Data General (DG) system running the Ada

Development Envirorment (ADE). The completion of this work will result in an
AIM implementation on the DG and is expected in June 1985.

1-2

v.,
= 2 3¢ 2 35 J

” '."."I". -

x

LA IS

“h 'nl" ..'.". -

A SN LI TP PR O P LS T
Letaty',.. Y

KIT/KITIA PAPERS

Only one paper is incl in this report which was generated by an
individual member of the KIT or KITIA. This paper, by Dr. Chris Napjus of the
KIT, articulates same of the ideas which have been discussed concerning the
concept of a standard MAPSE (i.e., minimal set of tools which are ALWAYS
available identically on ALL APSEs).

OTHER KIT/KITIA ACTIVITIES

The planning activities for the Ada Run-Time Environment Working Group
(ARTENG) have continued and the attendance has been increasing. There is
growing interest in the commmity in issues which this group is addressing.

The CAIS Implementor's Group (CIG) held its first meeting in June in San
Diego. Rebecca Bowerman (MITRE) was elected chairperson, and the group made
various decisions regarding how it would consider the addition of members and
what its goals and mode of business would be. A subsequent meeting was held
in Hyamnis in conjunction with the AGaTEC meeting there in August and another
meeting was planned for the November AJATEC meeting in Washington, D.C.

CONCLUSION

This Public Report is provided by the KIT and KITIA to solicit camments
and feedback fram those who do not regularly participate on either of the
teams. Coamments on this and all previous reports are encouraged. They should
be addressed to:

Patricia Oberndorf

Code 423

Naval Ocean Systems Center
San Diego, CA 92152-5000

or sent via ARPANET/MILNET to POBERNDORF@ECLB.

-\‘)

I S T T T T N T S I S ST S S S SN ST S S S
~), -f'._ \'\.‘, VD SIS N SN AT T T P AT A SO

''''''''''''''

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

e

N
v P

SECTION II

TEAM PROCEEDINGS

" e Ly

s RO

1

1. OPENING REMARKS

@ Herm Fischer, KITIA chairperson, brought the meeting to order. All
were welcamed.

2. GENERAL BUSINESS

@ Herm Fischer gave a presentaion of an Onion Skin Model to add to
discussion of a layering to the KITIA. A CODSIA Report was made
available to explain the model.

® Discussion of the layered KITIA took place, and it was decided that
the two of Judy Kerner and Eli Lamb would be formalized and
presented later in the meeting.

e The question of a Run Time warking group made up of an independent
team was brought up. This team's objective would be to lock into
the issues of Run Time standards, not necessarily taking as a premise
that we have a Run Time Standard.

@ Tricia announced to the guests the named and muber warking groups

ard encouraged the guests to join whichever group they seemed most
interested in.

3. KITIA MEETING ADJOURNED

. -'.".r."lv
F e e

13 APRIL 1984 - JOINT KIT/KITIA MEETING

1. OPENING REMARKS
® Tricia Oberndorf, KIT chairperson, rought the meeting to order.

& New replacement members and visitors were introduced. Bill Barry of
FCDSSA, San Diego is here to replace George Robertson. Tam Conrad
frunMJSCi.sRmHomesreplacaturt d\eng-cnnmmlgofﬁugtm
is here instead of Jim Ruby. Geoff Fitch fram Intermetrics is here
instead of Jim Moloney. New members are Tony Steadman of ESD, his
alternate Bob Munck fram MITRE and Susan Good fram NOXC with Tricia.
Visitors/Guests are Ben Brosgol of Alsys, Mike Dolbec of Rational,
Larry Druffel of Rational, Gerry Fisher of CSC, Sylvester Fernandez
of Sperry, Dean Herington of Data General and Charles McKay of NASA/
University of Houston at Clear Lake.

L

PAR

2

)
E P

.

4.

TN

| S

2. GENERAL BUSINESS

e Status of the TI, TRW contracts and E&V task were presented. Herm
tock the floor to summarize the KITIA meeting of Monday, 9 April
1984. A discussion of the Onion Model and a layered KIT/KITIA were
presented. Anthony Gargaro was also appointed temporary chair of the
Run Time Planning Group.

3. NAMED WORKING GROUP REPORTS

L4

AU RAURIR)2

~

}

@ Jack Kramer of the CAISWG discussed that CAIS version 1.2 would be
delayed. Accomplishments are work done on mandatory and
discretionary security and distribution/work stations. Projected
work includes changes due to camments. CAIS Version 1.2 will be
due next quarter and will include changes fram 1.1 to present. At
next meeting plans are to discuss remaining items for 1.3. A CAISWG
forum/workshop is being planned for 2 August at the Hyannis AdaTEC.

o Hal Hart of the RACWG discussed the RAC's approval as an action item
for the meeting. Accomplishments are the rewrite of the RAC(17 Feb)
based on the January meeting, the development, distribution,
oollection and analysis of the 17 responses, and the revision of the
docunent 23 March 1984. Unresolved problems are sections 4 and 6
Projected work is the approval of section 4 and 6, to begin the
rationale for the RAC, and begin evaluation of the CAIS against
the RAC. Item due next quarter is a camplete approved RAC document.
Presentation planned for next meeting is status of the document.
Discussion of procedures for approving/disapproving the RAC then
tock place. Tricia also expressed her disappointment in only 17
responses to the earlier draft.

e Amn Reedy of STONEWG discussed items due this quarter. She reported
that a decision was made to make a preliminary analysis of the STONEMAN
document. There is currently a draft of these analyses. The
unresolved problem is primarily a long term work schedule.

Projected work includes a cross reference for the RAC and a
presentation by Frank Belz of TRW's PA-APSE work at the next meeting.
Everything else is TED.

® Ron Johnson and members of the GACOWG are currently working on a draft

of 4 chapters of the document. They have came to find out that after

looking at the users guide to ility there is more than the
CAIS to making a transportable tool set. The more they investigate
the more they find out they need to lock into. The group is in hopes
of having a canplete draft of a Guidelines And Criteria document by
December, entitled "A User's Guide to Ada Transportability."

® Rudy Krutar of the DEFWG stated the cambined glossary is due this
quarter. Drafts are available. Accomplishments are an established
definitions pool, a draft of the CAIS glossary, and a cambined
glossary for the RAC and CAIS. Unresolved problems are moving the
definitions pool to ECLB, and the KIT/KITIA review of the combined
glossary. Projected work for next quarter is an additon of the
STONEMAN terms to the glossary and the open definitions pool for the
KIT/KITIA. Items due next quarter are TED. Presentations planned for
next meeting are how to use the definitions pool. Dission of a
glossary for every document and format for definitions followed.

Eaaipiosk Matis ot vt S st Judt St LA S A G e Sege e & N e B S phany ke SR stk ooy l.‘{'ﬂ

:
:

@ Bernie Abrams of the STANDWG stated that a draft charter
quarter. Accomplishments this quarter are review of the Meta Specs,
DOD 4129.3 and MIL STD 962. Unresolved problems are CAIS compliance
to MIL STD 962 and personnel. Clarification was made as to the role
of the STANDWG: to make an "offical” documsnt and not tonlmm

mmamms.mmmm
the QAIS for campliance and review existing standards

ﬁ‘r
fé%

e Tim Linquist of COMPWG stated that this growp is still in the

formulation stage. There are no real items dus this quarter.
Activities are the relationship between RAC and the CAIS ard the
semantics of the CAIS. Unresolved problems are taking the charter

of the OOMPWG ard defining a set of deliverables, deciding what
standards relate and configuration management of the COMPWG activities/
tracking different versions. Projected work is a deliverables list.

ANNOUNCEMENTS
® OM workshop last June - participants are asked to review their sections.

e Public Report IV closes 30 April. Pecple with individual papers should
give them to their working group chairs.

e CAIS caments and responses will be available the week of 16 April in
KIT-INFORMATION.

® RADC is another source for the Public Report III, cost is 35 dollars..

e A proposal for the CAIS Implementors Group is in the works. A meeting is
scheduled for early June. Tricia does not plan to head it. She just

plans to have a kick-off meeting in hopes the group will organize
and start itself.

@ A Human Factors workshop is being hosted by IDA in early May by
invitation only. Talk to Jack Kramer for more information.

e IEEE amnounced a conference in Ada Applications in Environments for
mid October. Topics include education, programming techniques,
design methodologies, environmental structures, and distributed
enviromments. Papars due 15 May.

® Rocky Mountain Institute of Software Engineering is hosting a

conference for 16-31 July. A ocamplete brochure is available 3
® The CAIS made the Government Camputer News, April 1964. 3
e The KITIA policy statement made the Language Control Facility

Newsletter for the Ada Jovial Working Group. <k
e There will be a CAIS session at AdaEurope, Brussels this June. 2

o The question was asked if anyone would be interested in X3H1-
the grouwp working cn the OSCRL document.

® An invitation to join under the CODSIA/OSCRL cammittee to work "3
on model screen driven operation systems was announced. :;

Bows b w T

Y

-

p 5
e
1N
v a

e

g
N A
womp

4
-

PTGV RS b gt
M)
»

.
K
X
_’ ad -
3 .
-
- v
ax
%
“a
LN
v
s,
- -t
vy
_—
.. ’ -
. .
.|
a .
&) .
s C
-
N
. ,’n
o\ "‘
Y
.
2 a
hL‘
~ .
‘6

A SR,

e e R T T g b T

G T S e UL OO M 2. % SCUe R oy L M R el Bt ' Wt W WL W WL N

5. MEETING SCHEDULE

19684
July 16-19 Toronto
Octcber 1-4 New Hampghire/ San Francisco

1985

January San Diego

April Washington D.C.

July San Francisco

Septenber Connecticut/Texas/United Kingdom (?)
1966

January San Diego

6. NEW BUSINESS

@ Tricia expressed her thanks from the group to Ron Johnson, the meeting
host, on the nice arrangements.

@ There was a proposal from Tim Lyons for a birds of a feather session
on formal definitions of the CAIS. A group was formed and a meeting

planned.

@ Numbered Working Group Chairs were informed to contact Debbie Barba
for mail forwarding directories.

7. ADDRESS FROM BRAIN SCHAAR

e Brian commended the group on its accamplishments and informed

everyone of his moving more towards education and training and less
involvement with the KIT/KITIA.

8. MORNING BREAK

9. REQUIREMENTS AND CRITERIA VOTE

® Discussion of approval of the document and format of the vote took
place. The vote was taken in written ballot to the following statement.

Resolved: This section of the RAC document substantially

represents the correct set of requirements for
the CAIS, and shall be placed under configuration

management and in Public Report IV.

The vote was taken in silent ballot for section 2,3,5and 7 (4 and 6
were optional).

18. LUNCH

1l. NAMED WORKING GROUP MEETINGS

......

AN N WA NS T R NI T O S W e, r.t‘-x--.-..--xAHc',':ﬂ

24

P

<

e

ALY

AL NS

. 2
G

w

o ..' AR A,

) ,.\." AR S o SERAMRUMS

;.
.,
>
.Y
'
L}

WEDNESDAY, 11 APRIL 1964

12. NUMBERED WORKING GROUP MEETINGS
13. BREAK

14. NUMBERED WORKING GROUP MEETINGS
15. JOINT KIT/KITIA RAC DISCUSSION

® The RAC votes were presented, and the RAC document sections 2,3,5 and 7
will be placed under configuration management and in Public Report IV.
The sections 2,3,5 and 7 were approved with camments. Tricia stated
that she sees a conflict in conplete and 99% I&T. The RAC right now reads
for camplete I&T. She also strongly suggests that WG3 put up on the net
the differences between operating systems and interfaces.

@ Section 7 was presented by Nick Baker, and it was decided that the

entiresecumdisamanrarﬂbeirmtpontaiinoﬂmrexistug

® Section 5's name is changed to Execution Facilities. Presentation
and discussion of the initiation, termination, commmication and
sychronization issues of this section took place. Also discussion of
the vote awhere that puts the docunent occured.

® Section 6 was also presented and discussed. Changes made and ideas to
add in the future to the document were discussed in each part of this
section.

® Section 4 was presented by Tim Lyons with discussion. Decisions made
by the group are on the following topics: basic levels of dynamic database
abstraction mechanisms, affirmation of cbject/attribute/relationship
approach, uni-and-bi-directional relationships, cbjects never die
(they just become inaccessible and relationships to these cbjects
became unaffected), detailing of relationship type, many-to-many
discussion, move security, processes in 5 should have relations to 4,
and other dms's (as a measure of capability not as a requirement it
be used as such.) Issues to address are cbject/relationship/attriute
identity/select/cperations, detailing of cbject, relationship and
attribute operations, transactions and dynamic access synchronization,
and integrity, back-up, archiving, and history.

THURSDAY, 12 APRIL 1984

16. WNIX AND THE CAIS: ISSUES AND DISCUSSION

e Eli Lamb first presented a Unix tutorial then went on to describe the
motivation for a Unix-based approach (timely, credible, and econcmical).
Rich Thall then spoke of the problams with using Unix as a base. H
brought up the issues as technical vs. administrative. Issues include

what definition is to be used and who supports the product.

5 &

.

g

)

B (33

0K |

250

VN
e |

[§

v
[

e In sumary the CAIS approach based on existing systems is attractive.
Concerns are control and technical. The technical concerns are
surmountable. The ALS and AIE are both reasonably campatible with
the Unix-based approach. The issues are a schedule and the econamics
of the CAIS.

S 17. NAMED WORKING GROUP MEETINGS

i") 18. KIT/KITIA SEPARATE MEETINGS

»P ® At the KITIA meeting a discussion and vote took place as to the idea of
o a layered KITIA. Two View points were presented by Eli and Judy. The
. vote wags taken, and it was decided to have NO change to the KITIA. It
L is assumed that the KITIA chair retains the power to invite guests on
N a limited basis.

O, e There was a review of the Onion Model to clarify the organization and
- role of the KITIA members. Herm asked for input on guests and will try
. to keep the mumber of guest between 4 ard 6.
- 19. LINCH
N

20. NUMBERED WORKING GROUP MEETINGS

- 21. KIT/KITIA WRAP UP AND CAIS STATUS
o
% @ The CAIS schedule was discussed and an updated version will be available
- i on the ARPANET. Public Report IV papers are Fitch's papers on mandatory
: and discretionary access controls and Larry Yelowitz's paper on formal
. semantics.
.
Sy e DEFWG stated that they are nearly at a consensus on Definitions for the
. CAIS to be in Public Report IV and the RAC document.
F o STONEWG stated the draft of the definition for the term APSE for DEFWG
A and the status report of STONEWG will be put in Public Report IV.
_-:' o GAOWG will have a GAC document for review in Toronto.
= © STANDWG's report was more of their original report with the announcement

= of a new mamber, Tony Steadman, and discussion of their relation to the
- QOMPWG .
- e COMPWG accomplished their deliverables list. They plan to have a draft of
Py cbjectives for the COMPWG in Toronto and ane for the KIT/KITIA at the
SR October KIT/KITIA meeting.
. . ® RACWG discussed the appearance of the RAC in Public Report IV. A consensus
e was arrived at to let Tricia and Hal make public the RAC document with an
- explanation as to expected changes. The RAC schedule was then presented.

t 22. MEETING ADJOURNED

': [
S
1
,.. - .:i_; .:q.'; ~ ‘: - ...: ‘ ...: ;,;_f..;:‘:.:-.‘-_-..:‘-._.- J.::_.'\- .. ‘. : :-..-..,;:‘,";_‘,.':;.:_‘..: ..;:‘.::“.:-_'.::..' : .::‘5'_;;_.‘;-‘.;_{; e

3 Sk RN S L L/,] L % » o g4 ra " i SR U P DA A~ wva [A
L
.
!
¥
.Y

A
- KIT Attendees:
BARBA, Debbie TRW
BELZ, Frank RN
CASTOR, Jinny AFWAL/AAAF
_ FERGUSCN, Jay Do
FTTCH, Geoff Intermetrics
FROMIOLD, Barbara CBECOM
> GOOD, Susan NosC
HARRISON, Tim Texas Instruments
= JOHNSTON, Larry NADC
KEAN, Elizabeth RADC/COES
‘:’ MILLER, Jo e
2 MITRE
;: =
NAVELEX 3
: osc 3
, FCDSSA-IN Ed
‘ SCHPAR, Brian AJPO
; STEADMAN, Tony ESD/ALEE ol
P
¥ 2
N
P
. -7 ®»

2-8

- - “us
K \a\ " v\ \ N . j
._1-4._1.{;1-(.- -1.- _! d'

.’- .'- '.. .,A

NENL

s

s "l"f"‘l' .

a e 8 W8
(]
PP L

ABRAMS, Bernard
BAKER, Nick
BRYAN, Doug

QoX, Fred

DRAKE, Dick
FELLOWS, Jon
FISCHER, Herman
FREEDMAN, Roy
GALLAHER, Larry
GARGARO, Anthony
GLASEMAN, Steve
HIANG, Cheng-chi
HUMPHREY, Diamna
JOHNSON, Ron
KERNER, Judy
LAHTINEN, Pekka
LAMB, J. Eli
LINDQUIST, Tim
LYONS, Tim

CaVIRALS TN A~giiy - gop L~ i s 6,7 d B pa o,

Grumman Aerospace Corp.
McDonnell Douglas Astronautics
Lockheed Missiles & Space Company
Georgia Institute of Technology
IEM

System Development Corp.

Litton Data Systems

Hazeltine Corp.

ESS/SEL/DSD Georgia Tech

csc

Aercepace Corp.

Hughes Aircraft Co.

Control Data Corp.

Boeing Aerospace Co.

Norden Systems

Oy Softplan AB

Bell Labs

Virginia Institute of Technology
Software Sciences Ltd.

PLOEDEREDER, Erhard IABG

REEDY, Amn
RUDMIK, Andy
WESTERMANN, Rcb

WILLMAN, Herb
WREGE, Doug
YELOWITZ, Larry

West Germany
PRC
GIE

TNO=-IBBC
The Netherlands

Raythecn Carvpany
Control Data Corp.

Ford Aerospace & Comunications Corp.

Y™

BROSGOL, Ben
DOLBEC, Mike
DRUFFEL, Larry
FERUGMNDEZ, Sylvester
FISHER, Gerry
HERINGTON, Dean
MCKAY, Charles

Alsys
Rational

Rational
Sperry

(o o

Data General

[l I R Pl B B ey Sy gt e g I 1 AR OV gl 5 et g g

TR LT

X

NASA, University of Houston at Clear Lake

: ."._-_-\.-_".‘-;- -a\-'-\- & -.-;_..; f,: ’.: -):._.... -~..-.. " ‘-“\-"n'\ *

A NI T I TR TN TR ORI T AT AT ST

APPENDIX B - MEETING HANDOUTS

1. "DOD Requirements and Design Criteria for the Comwon APSE Interface Set",
Draft 23 March 1964. -

2. "Draft Specification of the Camon APSE Interface Set(CAIS) Version 1.1.1",
9 April 1964.

3. "QODSIA, Council of Defense and Space Industry Associations Report 13-82,
Volume II, Background and Issues, DOD Managemant of Mission-Critical
Camputer Rescurces”, March 1964.

PP
.
Ty 'y

WA

A TN

»

o
A
rqd s bt

v v

[N

RN

T f.

D)

-

‘ -
&
S

5

3 =

ﬁ -

b ‘e
3

B, L2, 1Y, 4

b i e e 4

I A d

A A A S A e N N TN

BARRY, Bill
CASTOR, Jinny
QaX, Fred
DRAKE, Dick
FREEDMAN, Roy
FOIDL, Jack
LINDQUIST, Tim
PEELE, Shirley

DEFWG Mambers:

BAKER, Nick
KERNER, Judy
KRUTAR, Rudy

GACWG Mambers:

DUDASH, Ed
FRENCH, Stewart
JOENSON, Ron
LINDLEY, Larry
WALTRIP, Chuck
MAGLIERI, Lucas M.
RIDMIK, Andy

Hazeltine Corp.
TRWN

Virginia Institute of Technology
FCDSSA~DN

McDonnell Douglas Astronautics

NSWC/DL
Texas Instruments
Boeing Aerospace Co.

John Hopkins Univ.
National Defense Hcxis.

GEMSymR&D

RN

2-13

"y

4
LY

F

‘ ,'] ., -
P s e

(Vo

3 B

7

v ¥
A O..l.

L g

)

e
o

-

3 .‘

.

CP LS
. & %

2

.

AN

FL‘E‘H’ NS

CORMHILL, Dennis
FELLOWS, Jon
GARGARDO, Anthony
HART, Hal

HUANG, Cheng—chi
KOTLER, Reed
MILLER, Jo

MUNCK, Bob
MYERS, Philip
OBERNDORF, Tricia

SIBLEY, Edgar
WESTERMAMN, Rcb

WREGE, Doug

STANDWG Marbers:

ABRAMS, Bernie
LOPER, Warren
STEADMAN, Tony

STONEWG Mambers:

BELZ, Frank
CONRAD, Tom
FERGUSON, Jay
GLASEMAN, Steve
HART, Hal

Honeywell/SRC
Systems Development Corp.

Hughes Aircraft Co.
Lockheed Missiles & Space

NAVELEX

Alpha Omega Growp, Inc.

TNO-IBBC
The Netherlands

Control Data Corp.

................

.I —_ ; l po —— —— oy e
| el J H.,) T AR A N] e N I |

So: ights Inc.

NADC

NAVELEX

PRC

General Research Corp.

JOHNSON, Doug
JOHNSTON,
MYERS,

REEDY, Ann
SAIB,

P - y o e e . e e e e e R . e
.\A\ Aty ...\.-..\. ol .-1.11- v IR » ..._....4.. W SO KRR S AR LR LR WY

¥

v vy v -

n:‘.u .

L A BE ek Ad 35 o

RUNPG Memibers:

ABRAMS, Bernard Gruman Aercepace Corp.
BAKER, Nick McDomnell Douglas Astronautics
BELZ, Frank TRW

BROSGOL, Ben Alsys

DRAKE, Dick I

DRUFFEL, larry Rational

FELLOWS, Jon System Development Corp.
FERNANDEZ, Sylvester Sperry

FISCHER, Herman Litton Data Systems
FISHER, Gerry csC

FREEDMAN, Roy Hazeltine Corp.

GARGARD, Anthory csC

HART, Hal TRW

HERINGTCN, Dean Data General

HUANG, Cheng-chi Hughes Aircraft Co.
JOHNSON, Ron Boeing Aercspace Corp.
JOHNSTON, Larry NADC

KERNER, Judy Norden Systems
MILLER, JoO NWC

MUENNICHCW, Isabelle TRW

MYERS, Philip NAVELEX
WILDER, Bill PMS~408

s

Cavi, e S
AT

v
‘--

3

e o A

sot
"

" A s

300 Gl E

ANy

P o

L)

- L'}

B

M st et L Ten e e et Ao Nl e Uk s R _om A sl agee B s Foaie,

Miautes
of the
KIT/KITIA Meeting
16-19 July 1984
Torente, Canada

ATTENDEES : See Appendix A
HANDOUTS : See Appendix B

16 July 1984

1

2

. Numbered ‘Yorking Group Meetings 0800-1200

2. Namned Working Group Meetings 1200-1700

16 July 1984 - KIT1A MEETING

1.

+>

z

Herm Fischer, KITIA chairperson, brought the meeting to order.

. Herm reviewed the status of the KITIA which he believed was about half complete regarding its

original charter. The KITIA may want to identify new goals for future activity.

. A discussion of Gerry Fisher's comments in Ada LETTERS followed. Although a time warp was

avident between when the article was written and when it wac published, the KITiA felt the
concerns regarding the ALS were stilt valid. The CAIS has made steady progress but the focus is
still in the paper realm.

. GENER AL BUSINESS

o There has been no KITIA objection to the thirty member limit.
¢ The KITIA chair requests feedback on the need for an implementors bosrd.

o Jlivier Roubine will be juining the KITiA as a representative of thwe EEC. Teiedyne has resignes
thew seat on the KITIA. Mike kKamrad is the Honegwell representative ang Cheng-Chn Huang s
gresent for Hughes Aircraft.

¢ Anthony Gargaro summarized the background and status of the Run-Time Planning Group (RLNFG)
which will meet the day after the KIT/KITIA rneeting. They sxpect to have 3 prelirmmnary raror?
for the next SIGAda meeting. The emphasis of this meeting is to astablich a charter and goals.

o A CaAIS implementor's Group held their initial meeting in San Diego. The group is cofipuseg ot
cornpanies and organizations that may implement the CAIS. Rebecca Bowerman was elected i
the Chairperson of the group at this first meeting

S KITIA CAIS Policy and Direction

@ Eli Lamb offerea zome considerations regarding the CAIS. With the Second Fublic Rewiew uf he
ZAIS scheduied Tor Hyannis the KITiA may want to exarnine the TaiS from the perspeccve of
*he AIE, the LS, cor zome compilers for s differsnt perspective Frad Do ex ;raes-z SR N
‘hat vh-v D00 will ot listen to offered uriticism/ opitnuns and w1l 90 ahesd with MIL-3TD ¢ ang 2

i diraer avolotion froen Yersions 1.1 .1 2 but without significant changes 77

sungider drafting a recomimended policy for consider stion by the A JF2

[Tt

e XOTA shoud

.....

gy o - e w s gt v, v AT TR E PR)
S S S O L G G N A L, SR SO N, N Y

i A P Bl B el R L W TR Vg Py

»

g ¥ o A e

2-17

-~ ™ o C'I

‘\- 0y s

LI

<

b

NSH

&4

Sy
-

ZA 3 @)

-

2y

..
0
~.‘

{ B

.
o

LA IR

-

L]

2

e

7.

Ly

. |"
v hile

¢ The present policy is vague in certain areas and totally iacking wn others. Fur example, 3 CAIZ
that is "upwards compatible” would be great but do we know enough now 10 define a reascnacle
base for the next ten years? How do we go from our old systems to AdaT Are subsets allowed
and how can compliance be established for subsets? The lack of working prototypes is 3
significant issue: we need operational experience. Additional concerns within the Ada community
are the level to which the interfaces are defined, the impact of the CAIS on the overall nda
Program (will it slow down the utilization of Ada), how to get industry to implement the CAlS,
and if in fact a CAIS is technically and politically viable.

o Edgar Sibley stated if we do not have a Standard soon we will have many problems in Ada with
interoperability.

o Tim Lyons presented the STONEMAN concept of building the environment around the Jatabase.
Without a database concept the CAIS is fairly conventional. Since we understand conventional
systems it is feasible to standardize the CAIS. But since we have no experience on environments
built around a database we really don't know how it should look or work in practe and we
dJesparately need experimentation in this area. Standardization normally builds on existing
implementations of which we have none so the CAIS becomes a desigh exercise, not just 3
standardization effort. Since the DoD is going to standardize the CAIS the KITIA should try to
make it as good as it can possibly be.

¢ Tricia Oberndorf reviewed the DoD development schedules of the AIE, the ALS, and the ALS/N,
the STARS concern for near~term interfaces and YHSIC commitments to a full CAIS. The CAIS
development and standardization effort becomes a focal point for these various programs.

o Eli Lamb presented some alternatives for consideration including :
- definition of an evolutionary path to a standard CAIS
- wait for more prototypes for evaluation
= start over at a lower level or use an existing base such as UNIX
- define subsets for piggy-back implementations
6. Herm Fischer prepared a KITiA ballot for the following issues. KITIA results are included.

o Should the CAIS become a Military Standard in January 1985?
fes -3 No-3Llater -9

¢ Should the KITIA offer to sponsor the ARTEWG/RUNPG?
Yes - 13 No -7 Abstain - 2

o Should the KITIA Tobby for a “CAIS ed” UNIX in quasi-public domain (a 1a Berkley)?
Yes - 18 NO -3 Abstain - |

Should the CAIS become a Military Standard in January 19857
Yes-S No- 17 Abstain -1

® Should the CAIS become a Draft MIL-STD in January 19852
Yes- 17 No-6 Abstain-0

7. MEETING ADJOURNED

17 July 1984 - Joint KIT/KITIA Meeting

1. Tricia Oberndorf, KIT chairperson, brought the meeting to order.

SRR AL TR IRk A R R SR T T TR AT AR RO R R K Nt e) X g - o N a Wl T o e o a W W e W R N aRa V. L

R
0 2. GENERAL BUSINESS
%
o The following new members of the KITIA were welcomed : Michael Horton (3DC), Mike Kanrad »
N (Honeywell), and Charlie Pow (Lockheed). Paul Riley (Dats General) and Kathy Gilroy (Harris} b
; were invited guests.
% o
* o Texas Instruments is responding to an RFQ for extension to allow the AlM implementation %o ‘ol
proceed using the Ada Development Environment. CAIS type interfices are also being analyzed.
A contract mod is in progress to TR to continue support until the RFP for the NOSC support -
contract is available. The CAIS Version 2 Design RFP is in contracts for release for a potential h f
X January award. v
3 :
t. ¢ Herm Fischer surmmarized the resuits of the preceding night's KITIA meeting including the 3‘
A results of the KITIA ballot (presented above). 3
o Jinny Castor reported on the Evaluation and Yalidation program (see handout). The Z&Y ~
o Quarterly report is now available. A procurement for CAIS Yalidation work is expected in :‘_.
Auqust. -
- o Ada Europe is producing a MAPSE selection quide following the format of the compiler 3
- selection quide. The MAPSE selection quide may be available by the end of the year. o
a 3. "WORKING GROUP REPORTS R
. RACWG . *
o - Sections 2&3 received abot 0% approval and sections S&7 about 70% spproval at the .
- April meeting. Sections 4&6 are expected to be baselined this quarter. Draft rationales -
oy for Sections 4&S are in progress. Expect a votable RAC for the next meeting. -~
'
N ¢ CAISWG ;
N - Expect a Yersion 1.3 to be completed in this quarter. Mandatory and discretionary 3
. access control have been added. The CAIS has been reformatted to comply with
MIL-STD document format. Better semantics have been provided with additional -
clarification of the node and process models. Responses to previous CAIS comments are
L being formulated. A second Public Review of the CAIS is scheduled for Hyannis at *he 3
~ SiGAda meeting. A CAIS Panel was conducted at the Ada Europe meeting guring vhich
valuable feedback was received. -
¢ CEFG ~
- - Drafted and submitted for review a draft Glossary for use in KIT /KITIA docurnerts E
- which will be published in the Public Report. The definitions pool will be moved to ECLE o
: for KIT/KITIA access. Additions to the pool to include STONEMAN cited terms will be o
added in the next quarter. ‘
* STONEWG o
L - A STONEMAN Analysis Report and a Status Report were provided for the Public Review
. The Status Report containz an outline for a revised STONEMAN docurnent, & cupy ry
s resides on the KIT-INFORMATION account snd corrnents are raquested o
N -
.‘!
~ ¢ STANDWG .
A - Reviewed exizting standards for comparison to the CAIS. Expect future worl to e ;3
meraged with the COMPWG efforts. -~
e
4
';“..‘-- iy .-- .'*\' -} !;}";'."}I:.\- '-}: 5 ‘-' -;.‘c' ‘--:‘-.‘:t;‘;'r o . Y .'-""‘:!: '! ";.\. = S}'F. - l. "J.“ :‘ "o ".) !‘ \ > S l - 3 'n\' AR .:. T :

e e Y R A R e e e e e e A T W S e WL L e T YW VYV wov L vy

T

S

o COMPYWG
- Preparing a draft CAIS versus RAL analysis. Plan to define 3 CAIS semantics
description technique , develop a Guidelines and Conventions for implementors, and
complete a STONEMAN versus RAC analysis.

»
1]

N e s o o e o

'}': o GACWS

LN - Drafted “A User's Guide to Ada Transportability * outline. Expect to have a draft for
review for the October meeting. Continuing problem of availability of personnel.

.

o 4. GENERAL ANNOUNCEMENTS

—

Judy Kerner advised the KIT /KITIA that IEEE has a working group on Ada s a POL. A draft of
their work is expected to be available at the August SIGAda meeting.

¢ Hal Hart reminded the members about the Future APSE Workshop scheduled for Santa Barbars
in September and that AJaTEC has been elevated to a Special Interest Group 3nd is now SiGada.

o Tricia Oberndorf reported on the following topics:

T T
. .

- The latest Public Report is in reproduction for distribution.

, - &s a result of the May Tri-Service review the STARS program is looking to strenqthen
- the area of software reliability and may have FY-23 funding to support this offort.

P il e aa £

- A CAIS implementors Group (CIG) has been formed and held its first meeting in San
Diego (hosted by Data General). Rebecca Bowerman (MITRE) was elected
. chairperson and plans future meetings in Hyannis and Washington D C. This group
expects to generite some point papers for AJPO bised on the results of thewr
.~ implementation efforts. This group is independent of the KIT /KITIA and is basically
X composed of CAIS implementors. Contact R. Bowerman for additional details.

= Hank Steubing of the JSSEE will make available their “Operational Concept Document”
for review and feedback.

= A second Public Review of the CAIS will be held at Hyannis, Ma with eraphasiz on
feedback from the audience on the major features of the document such is the rode
-, mode), process, 1/0, and non-technical issues. Working groups in each of these sress
will be formed to address specific topics and formulate recommendations. The eniphasis
will focus on the concepts rather than specific details.

~
e = There will be a meeting of the Runtime Planning Group Thursday evening and Friday ;
contact A. Gargaro for details as attendence is limited.
::f' ~ Bob Mathis and the AJPO are interested in comparing the CAIS and different operating
- systems; any analysis previously performed is welcomed.
- = The future meeting schedule stands as:
. = 1984 Oct. 1-4 in Merrimac N
X = 1983 Jan. 14-17 in San Diego

Apr. 15-18 in Washington D C.
t’.‘ Jul. 8-11 in San Francisco area
: Sep. 23-26 in Rhode 15land

- 1926 Jan. 13~16 in San Diego
Apr. 14=17 in Atlanta
Jul. 7-10 to be determined (Schenectady , NY)
Sep. 22-25 to be determined (Twin Cities, MN)
- 1987 Jan. 19-22 San Diego

4. BREAK
. S. TECHNICAL REPORTS

¢ Tom Conrad (NUSC) reported on the status of the Joint Service Software Engineering
Environment plans for development of a Plan of Action and Milestones (POAM) and an

- Operational Concept Document (OCD) as the high level planning documents for the Software
R Engineering institute (SE). The SEi, which is expected to be announced in the fall, will e
3 responsible for implementing the requirements formulated by the JSSEE.

o Dennis Cornhill (Honeywell) presented results of their experiences with Ada for distributed
targets. Their goal was a realization of an “Ada machine ™ through the integration of a number of
heterogeneous processors. The methodology was to complete a detailed partitioning of software
prior to the detailed design phase. The partitioning was based on packages, subprograms, named
blocks, tasks, objects (variables, constants, etc.) and instantiations of generic units. It was
found that a preliminary functional partitioning was required before the detailed design phase.
Configuration control during the functional allocation phase was maintained by basing the
configuration change on the accepted partitioning change. The partitioning was made on
application functional boundaries.

® Bernie Abrams (Grumman) reported on a survey conducted for STANDWG to see if the CAIS is
conflicting or redundant with existing standards. The results were that although there are a
number of organizations that issue standards (ANSI, ANS, DoD, FIPS, IEEE, MIL-STD) there is
presently no standard comparable to the CAIS. The closest document may be the ANS!I TXH1
Operating System Command & Response Language effort that is ongoing.

Pl DA MY

¢ Rudy Krutar reported on the construction of a schema for maintenance of definitions in & poci
for the DEF'WG. Queries can be obtained for sources which will list terms or for the gloszary
which lists the glossary. A standard data entry format has been identified.
€. BREAK FOR LUNCH.
. 7. RAC DISCUSSION.
o Tim Lyons (Software Sciences Ltd.) gave presentations on the level of the CAIS interfaces and
the merger of database and filing system concepts. A transcript of these presentations is to e
made for KIT/KITIA availability.
o Hal Hart (TRW) summarized the Requirements and Criteria (RAC) efforts and diztributed a o
copy of the latest RAC Section 4 contents. Issues for consideration include exact names versus -
exact identifiers, data inteqrity area definition and consistent terminology.

4
:: 2. REORGANIZE INTO 'WORKING GROUPS. -
Wednesday , 18 July Ve

3. COMTINUE ‘#ORK ING GROUPS o

21

I S e S Wy ey
S LGRS O J.:-.'.%’;L*ixhﬁi

8 She Py MM 0 P Mt @ o gD S e R DR 4 = N R T Y T T O W L

10. CONTINUE RAL DISCUSSIONS

o Frank Belz (TRY) summarized current requirements for data management. These include
- a ineans of retaining dats
- a means of creating and operating on data
- a description of data (which may be operated upon)
- a separation of relationships and properties from both their existence and the tools that
operate on them
- 3 w3y to develop new data by inheriting properties of existing data

11. ADJOURN FOR DAY

Thursday , 19 July

12. CONTINUE 'YORKING GROUP MEETINGS.
13. TECHRICAL PRESENTATIONS

o Andy Rudmik (GTE) presented the status of their work on a Distributed Software Engineering
Control Process. An integral part of this effort required definition of an interface set
comparable to the CAIS. Analysis results thus far indicate the CAIS interface level is the most
appropriate for implementation. This project now has a working prototupe with approximately
300 packages.

o Frank Belz (TRY) presented the status of the Prototype Advanced APSE task being performed
for the Naval Ocean Systems Center (NOSC). This task calls for a prototype implementation of
CAIS interfaces and integration of selected tools utilizing these interfaces. The host
environment is a VAX/UNIX system. Results of this effort will be provided to NOSC for
consideration by the CAISWG.

¢ Jack Kramer (institute for Defense Analyses) chaired a summary of current changes o *ke
CAIS and future directions for expansion.

14, KITIA MEETING.
o Herm Fischer (Litton), KITIA chair, conducted a KITIA meeting. KIT members were invited *c
attend. Herm reviewed the previously voted issues and discussed the benefits of a “CAIS'd
UNIX™ implementation which could be accomplished in various ways including AJPG contracts or
grants 1o universities. Herm suggested the KITIA should look to future directions as » aroup
possibly considering the areas of methodology , risk reduction or prototype Jevalopmert.
Subsequent discussion by the KITIA recommended formulation of a risk reduction proposal for
submission to the AJPO,

15. BREAK FOR LUNCH.

16. REORGANIZE INTO WORKING GROUPS.

17. WORKING GROUP REPORTS.

¢ STONEWG - Herb YWillman (Raytheon) will be joining this group which will continue 1ts wart: on
formulation of 3 STONEMAN 1l document.

0 GACWG - plans to expand its outline of a Guidelines and Conventions documnent,

' oA .. - RIS TIPS I PRU, 3N, ROIATS \
i $x v \ R San X \
PRI -".n\..n A ‘ _p\.ﬁ\ -\ '.g _:'.A A _.\‘.' i‘; . hﬁ_.u .L\.\n __.‘-h .\i‘)i‘lAX .\. \L&‘ x.n n': a ‘- XN \' d :"

O Y N I T T T T T T T T T o T P T TN Ty I T TN = w7

4
:'n
& o RACYWG - expects to obtain consensuz on RAC Sections 4= in August,
o DEF/G - solicited KIT/KITIA support for commonality of terminalogy among KIT/KIT1A
; j documents and requested member input via NET for expansion of definition pool.
" 3 # COMPYG - will continue analysis of the CAIS versus the RAC documents to help identify any
d inconsistencies between these documents. Also expects to initiate work in conformance areas
4 and to identify related poticy and technical issues.
¢ STANDWG - will continue work in specification analysis.
L 18. CLOSING PEMARKS.
- o Herm Fischer (Litton) indicated the results of the KITIA vote for future direction supported the
risk reduction proposal.
. o Mo major problems were identified with the April meeting minutes.
':: o KIT/KIT1A gratitude was expressed to Lucas Maglieri (National Defense Headquarters, Canada)
. for a superb job as meeting host.
-
- 19. MEETING ADJOURNED.
:
:. A
-
v
-
.
R
2
et
':‘ g
- v
'™
3 .
- Sy
- >
’ A
~I
L -
- K
\' -
. '._J
3 N
N
ﬁ.
23
-’""-°-».'P-'s';'-¢"‘."'...."..\.-'-"' q'“-fq n\\. \\"*\\!;\. .‘.‘\\ CORC Y - . o =

o R R e Tag MO

oy
~ APPENDIX A
ATTENDEES

KIT /KITIA MEETING

3 - 3

KIT Attendees:
N BARRY, Bill FCDSSA-SD
e BEL2, Frank TRY
CASTOR, Jinwy AFW AL/ AAAF
& CONRAD, Tom NUSC
. FERGUSON, Jay DoD
: FITCH, Geoff intermetrics
HARRISON, Tim Texas Instruments
. HART, Hal TRY
JOHNSON, Doug SoftWrights
O JOHNSTON, Larry NADC
c KEAN, Elizabeth RADC /COES
KRAMER, Jack DA
KRUT AR, Rudy NRL
LOPER, Warren NOSC
. MAGLERI, Lucas National Defense Hq., Canada
8 MILLER, Jo NWC
i ::;12 MUNCK , Bob MITRE
- MYERS, Philip NAVELEX
i K OBERNDORF , Tricia NOSC
S PEELE, Shirley FCDSSA-DN
- TAYLOR, Guy FCDSSA-DN
L THALL, Rich SofTech
ﬁ) WILDER, BN PMS-408
- &=
-
e
it
. 224
e e et d et e el

S o ¥ia 2T g L mae Y e ¥ e R Ty By e ML e B A L MLTR LTI N TR ML e Y be, WL L A

i ol
o KiTla Attendees:
N ABRAMS , Bernie Grumman
" BAKER, Nick McDonnel Douglas
- CORNHILL , Dennis Honey well/SRC
« DRAKE, Dick BM
"y FISCHER, Herm Litton
. FREEEDMAN, Roy Hazeltine
'Q: GARGARO, Anthony csC
:;’ 5LASEMAN, Steve Aerospace
> HUANG Cheng=Chi Hughes
h_ HORTON, Michael b
_. JOHNSON, Ron Boeing
KAMRAD , Mike Honey well/SRC
I KERNER,, Judy Norden
K LAMB, EYi Bell Labs
N LINDQUIST, Tim Virginia Tech
< LYONS, Tim Software Sciences Ltd.
MOGONAGLE, Dave General Electric
| MORSE, H. R. Frey Federa) Systems
PLOEDEREDER, Erhard Tartan Labatories
POV, Charley Lockheed
REEDY , Ann PRC
RUDMIK, Andy GTE
: SIBLEY, Edgar AQG Systems Corp.
WREGE, Doug Control Data Corp.
".? KITIA Guest:
o GILROY, Kathy Harris Corp.
,‘ .; RILEY, Paul Data General
s

ar
l.-.
)

A8 "
:' ‘ :‘.
f' -
". 5
" ‘,-‘
|
o
N o
~ =)
» a2
"
- it
2-25 »

\‘.‘ \, -.) '_..\...n.\-:\‘ \.* }\.."...‘\.._‘.

)
PRI

R EAEA

T A RN NG R U TR
g

\'
"
::f APPENDIX 8 - MEETING HANDOUTS
' 1. CAIS Standards Sub-group Coordination Report, 9 July 1984,
> 2. EXV Status Report, not dated.

2-26

e PR Y ..
. N AL
e

K -~ . e® W
te. .-.'J.':D-":~\:p\:-\:h";

e o AR _§: Wpsis #co n - oy - S Ry e AR e T g 0 S g b N et G i gud gl oAl el g et Py Pt et e rptesming kg i

KIT/KITIA MINUTES
1-4 OCTOBER 1964
Merrimack, New Hampehire

ATTENDEES: See APPENDIX A

2 OCTOBER 1984 - JOINT KIT/KITIA MEETING

1. GENERAL BUSINESS
® Introduction of visitors and new representatives were made.

e Cbeservers from Los Alamos were welcamed. Los Alamos is pursuing
a CAIS implementation on Unix.

o Evaluations of the bids for the KIT Support contract have been
campleted.

e The AIM contract has been extended for eight to nine months.
ﬁ @ An E&V procurement for support of the team is imminent.

P- . 2
= o DIANA maintenance has been contracted to Intermetrics.

2. NAMED WORKING GROUP REPORTS

® CAISWG
Jack Kramer announced John Long of TRW is now supporting the CAIS
effort at I.D.A. Campleted projects this quarter were the CAIS
version 1.3 and the AJaTEC CAIS review in Hyannis. Revisions have
begun on CAIS 1.3 to camplete version 1.4 for next quarter. C(AIS
version 1.4 is due for typeset in January and will be delivered to
Bob Mathis. Presentations for next quarter are a status of the CAIS
docunent as a military standard and progress on the accampanying
rationale. Jack also requested additional help to work with Tim
Harrison on the I/0 section of the CAIS.

@ RAOWNG
Sections 4,5, and 6 of the RAC document were scheduled for a vote,
but section 4 was deferred until next quarter. Also an action item
fram the July meeting was raised, stating that the group was
dissatisfied with the treatment of security. The group extracted
functional requirements fraom the "orange book” and stated that the
RAC namenclature was inconsistent with definition of terms in the
“"orunge book". Projected work includes cbtaining approved sections of

IR

l.l

-2

O

RO

1 S

“ . e
e
s

)

>N

- aMoWL R Y _F.nla s d. ». ¢ s e ¥ T = - - = i

W all requirements chapters, which will be attached to the CAIS Version 2
RFP. Also planned is a more formal procedure for configuration management
and the development of a rationale for the RAC.

® DEFWG
Due this quarter was a cambined glossary and an inclusion of STONEMAN
terms. Campleted work includes a definition tool on ECLB and a review of
the gloesary over the ARPANET. Projected work includes adding STONEMAN
terms to the glossary when a revised version of STONEMAN is camplete,
opening a definition tool on the ARPANET for use by other team members,
: and a requirements and criteria glossary update. A presentation is
scheduled for next quarter on using the definition tool. Other actions
e include a decision that "“orange book"” definitions take precedence owver
all other definitions.

AR

fl

o STONEWG

- Anh Reedy discussed the items due this quarter which included a revision
of a very rough draft of STONEMAN II and to review the tool set section.

o GAOWG

Ron Johnson expressed difficulty with availability of personnel, which

has been slowing the progess on drafts for al’ -hapters of "A User's Guide
. to Ada Transportability". The group expanded resources to include other
. gmdesandconventmnsandarecunentlyworklngmdetnledwtlmof
W these. Projected work for next quarter is editing and campleting all

. chapters of the guide and a description of the user's guide. Tricia stated

g the possibility that scme CAISWG members might support the GAOWG during
! the next quarter.

; o OOMPWG
| Tim Linquist focused on a draft on standards related to the CAIS and
) discussed CAIS conformance and semantics.

3. GENERAL ANNOUNCEMENTS

® Tricia noted the absence of San Diego TRW representatives, considering
that Jack Foidl's daughter, Andrea, had recently undergone heart surgery,
and suggested sending a post card to her.

o Please check master KIT/KITIA address listing and make any necessary
corrections.

SRS @ Susan Good is now Susan Ferdman and is working in Philadelphia as a
© consultant for the CAIS until the middle of this month.

¢ There have been cbvious problems with ECLB, due to moving the machine,
vhich forced the utilization of a much slower circuit. when the MILNET

is uwp again, the new host address will be 26.7.0.65.

e

- 2-28

- 0N Ar S AP O AN A AN AN L e NS SN AT P T AN b it M i aytam Ja gt et SRatb DA e Bt bb A AL At A A A S S AR A R

A
A
- .
) e SIGAda elections results indicate Anthony Gargaro is the new SIGhda
N chairperson and Hal Hart is the vice-chair for Liaison.
.
@ Our caments on the JSSEE OCD were received. The chairperson, Hank
N Stuebing, emphasized that the KIT/KITIA should be aware of two
~ important points:
“‘\' a. The OCD is a user's view of SEE, and any reference to implement-
ation is only for illustration.
b. Also, the OCD is not a follow-on to the STONEMAN, since the OCD is
= a user's view of SEE and STONEMAN is an implementor's view of APSE.
® A Future APSE Workshop was held in Santa Barbara and, although the CAIS
was discussed, it was not the focal point. Emphasis was more on a
x parallel with JSSEE and a user’'s view of advanced capabilities. All “q
- working group chairs are coordinating reports of working groups' '_-]'
- discussions and a summary should be contained in a special Ada Letters ’
. sametime in the spring. o
o -
b 4. MEETING SCHEDULE
= 1985
= Janvary 14-17 San Diego i
April 15-18 Washington D.C. -
| July 8-11 San Francisco -
) Septenber 23-26 Rhode Island _
1986 o
January 13-16 San Diego
April 14-17 Atlanta -
July 7-16 Schenectady, NY -
.,:' September 22-25 Minneapolis/St. Paul T
1987)
. January 19-22 San Diego o
3 ~
" 5. DEFINITIONS AND DISCUSSIONS N
_‘ ® "Orange Book" Glossary: o
. It was determined by WG2 that the definition of "object" should be
i changed to "entity" throughout the RAC, considering the fact that N
o the "orange book" terms have precedence over all other definitions <
~ and its definition of "object" did not mesh with the group's intended
2 use of the word. -
-~ N
2 e DEFWG Terminology Issue Resolution: -
0 Jack Kramer reviewed the problems with terms and definitions in the
< L
B -
:_ phn

R -
g - 4

S

glossary. The definition of "process" was discussed in reference to
the "orange book" and in the RAC. Several opinions and responses
about conflicts in definitions were expressed and an effort was made
to determine exactly what was needed. Tricia asked DEFWG to obtain
information fram the people at the meeting to distinquish the terms
and definitions and also to design a procedure for collecting and
reviewing these terms.

6. SEPARATE MEETINGS ON RAC SECTIONS

3 OCTOBER 1984

7. CAIS HYANNIS REVIEW REPORT

® Node model discussions concentrated on standard attributes,
distributed systems, and access control.

@ Process model discussions emphasized the blocking/nonblocking
issue.

® Seaurity discussions centered on the need for a consolidated
approach.

e Input/Output discussions included magnetic tape support,
pragmatics, standards, and queue nodes.

® Non-technical discussions centered on the pros and cons of
military standardization according to the current schedule.

STRATEGY DISCUSSIONS WITH ©06'S AND BOB MATHIS

® Tricia welcamed Bill Wilder of the Navy representing Captain Boslaugh,
Bob Mathis (the director of AJPO and STARS), Brian Schaar (the Navy
deputy to the AJPO), Col. Nidiffer of the Air Force, and Jim Hess of
the Amy. Discussion began with the CAIS introduction and general
strategies for furthering the Ada program.

e Fram the Hyannis Review, concerning the original plan of submitting
a military standard in January 1985, it was decided to submit to the
AJPO a candidate for standardization instead.

e Herm Fisher reviewed the discussion of the July meeting and the major
ideas he and Eli Lamb expressed: (1) the CAIS draft due in January
should not be standardized, (2) prototyping should be the next object
of oontracts, (3) Eli's alternative look at a risk reduction contract.

o Key issues of the risk reduction contract were to capitalize on industry's

current ideas and to create some type of CAIS subset to be campatible
with industry and allow tool transportability.

Y
St _
N ‘v

~ t:d
¢
W ® Bob Mathis expressed the STARS objective to develop the best Software 1
Y Engineering Environment (SEE) by the end of the decade in two phases

and have it installed on a service project. ;
*“f’ff @ The majority agreed on the need for an interface standard, however
disagreements arose concerning the strategy necessary to achieve this,
ré the time constraints involved considering other enviromments being B
» developed, and how to keep industry's support and interest by clarifying

N ® Rich Thall of SofTech suggested a proposal for advancing the Ada N
s environment standard by developing two parallel standards: (1) the
. first step was to put an Ada enviromment on top of an existing =
. operating system and achieve transportability this way, (2) the next 5
* issue was a cammon APSE operating system design to achieve the long

term goal of transportability and intercvperability. Rich also .

N discussed the pros and cons of using the already existing UNIX system. E\
: \
b ® Many diverse views and opinions were expressed regarding alternmatives 7
for possible conformance policies, including CAIS subsets and/or fod

supersets.

: 3
v 9. RAC SECTIONS 4 & 5 Presentations/Discussions a
~
. Tim Harrison reviewed RAC section 6 revisions. A vote of approval was e
’ deferred until the end of the session, along with votes on sections 4 -
& ard 5. Frank Belz discussed RAC section 4, involving data management,

Y typing, identification, operations, transactions, and history. E?‘
i N

Results of balloting: v
Section 4 yes(21), qualified yes(15), no(l), abstain(9) -

X Section 5 yes(26), qualified yes(8), no(l), abstain(l) 2
” Section 6 yes(24), qualified yes(1ll), no(l), abstain(2)

; ‘:
- 10. JSSEE review by Herman Fischer. i

*

© 4 OCTOBER 1984

: L
11. STONEWG Presentation - Steve Glaseman -
12. ALS/CAIS Study Preliminary Report - SofTech o

A <
2 Rich Thall introduced Rich Simpson, Nancy Yost, and Carl Hitchon Ce
, as the other members of the SofTech team that is focusing on =
. resolving *he differences between the ALS and CAIS, and designing
! g

2-31 o

'. P RTTRIN S5 Doy e R Jol Ry . RNy ':_;v NN -‘ N TR T S AT RN -

Y e TR et CAPAN R 2 TR S

T T T W R T

OLY S g 3 F

astrategyforanns-to-alsmmitim.'memlmugyu
to build a CAIS KAPSE on top of an ALS interface and, alternatively,
14

build an ALS KAPSE on top of a CAIS interface. The group has campleted
! a draft document studying these ideas and is approximately halfway
- through with the project. Rich Simpson discussed a database
r for mapping, followed by a process camparison by Rich Thall.
»
wd
A

13. SEPARATE KIT/KITIA MEETINGS

14. NUMBERED WORKING GROUPS MEETINGS

i 15. KIT/KITIA WRAP UP

o 16. MEETING ADJOURNED

A AT

ALY

LI R AR I XTI RN o o O L 3 o o Wy R el e wr e T REY T gt mplh iy 96 7 .. R rm Fak T o §. W

APPENDIX A

KIT/KITIA Meeting
1-4 October 1984

KIT Attendees:

BELZ, Frank TRW

CASTOR, Jinny AFWAL/AAAF
FERGUSON, Jay DaD

FITCH, Geoff Intermetrics
HARRISON, Tim Texas Instruments
HART, Hal TRW
JOHNSTON, Larry NADC
KRAMER, Jack I.D.A.
KRUTAR, Rudy NRL
LINDLEY, Larry NAC

LOPER, Warren NOSC
MAGLIERI, Lucas National Defense Hq.
MILLER, Jo NWC

MUNCK, Bob MITRE
MYERS, Gil NOSC

MYERS, Philip NAVELEX
OBERNDORF, Tricia NOSC

PEELE, Shirley FCDSSA-DN
SCHAAR, Brian AJPO
TAYLOR, Guy FCDSSA-DN
THALL, Rich SofTech
WILDER, Bill PMS~408

KIT Guests:

2-33

‘{.-.‘ o T e e e T.e-‘...u o 1.7.,..\.‘...-“-” -...-‘ S \:_..‘V :';' YIS .'~(..h3.; ". -"\f-“:*\ ...’ . y

el WA So 2% L 5% A LA X 3, 3%)

A T RTRT b R TR I T,

&)l

v 35 RN O/

M

,v
ety

e

Lt

o

[S0

Foes

» &

38 5

| AN

e
¥

E'.’al

—

Ay 1

e

-, .
P

o8

3 N ROR Ao Al §,\')t~

)
Fatals

P a2t

m‘:_':

w4
ol

'1“.
LN

ML Y

l.l.’

4

- .
b\ 0%y, 0 AT

KITIA Attendees:

ABRAMS, Bernie
BAKER, Nicholas
CORMHMILL, Dennis
DRAKE, Dick
FISCHER, Herman
FREEDMAN, Roy
GARGARO, Anthony
HORTON, Michael
JOHNSON, Ron
KERNER, Judy
LINDQUIST, Tim
LYONS, Tim
MARTIN, Ed
McGONAGLE, Dave

MORSE, H.R.

PLOEDEREDER, Erhard

REEDY, Ann
ROUBINE, Olivier
RUDMIK, Andy
SIBLEY, Edqar
WILLMAN, Herd
WREGE, Doug
YELOWNITZ, Larry

KITIA Guest:

GILFOY, Kathy Harris

McDonnell Douglas Astronautics
Honeywell/SRC

Litton Data Systems
Hazeltine Corp.

csC

SDC

Boeing Aerocspace Co.
Norden Systems

Virginia Tech

Software Sciences Ltd.
Lockheed Missiles & Space Div.
General Electric

Frey Federal Systems
Tartan Laboratories

PRC

Informatique Internationale
GTE

20G Systems Corp.

Raytheon Campany

Control Data Corp.

Ford Aerospace & Cammmications

SECTION i

KIT/KITIA DOCUMENTATION

3-0

........

X

T At o h T AT Y A ", T W e 0T I
A AN Lf:&':!' } M‘ .'T ?} }:&':' >, -“_'.'}.‘}:P,_-\.'a' -

T .
v, .,

THE SECOND CAIS REVIEW MEETING
HYANNIS, MASSACHUSETTS
2 AUGUST 1984

T. Oberndort
Chairman
KAPSE Interface Team

INTRODUCTION

The second Cammon Ada Programming Support Environment (APSE) Interface
Set (CAIS) Public Review was held in Hyannis, MA on 2 August 1984 in
conjunction with the AJaTEC meeting at that time. Over one hundred
participants from industry, academia and goverrment attended. The
subject of the review was Version 1.3 of the CAIS document.

The CAIS has been developed by the CAIS Working Group (CAISWG) of the
Kernel APSE (KAPSE) Interface Team (KIT, a Navy-lead DoD team) and the
KAPSE Interface Team from Industry and Academia (KITIA, it's
industry/academia counterpart) for the Ada Joint Program Office (AJPO).
These teams have been meeting since early 1982 in an attempt to define a
set of interfaces vhich could be implemented in all APSEs in order to
make it possible for APSEs to share tools and databases. The Quxrent
version of the CAIS primarily addresses only those interfaces needed to
share tools.

The review was preceded the previocus night by a two-hour discussion of
the changes that have been made to the CAIS interfaces since the last
Public Review (held September 1983 in Washington, D.C.). Consequently,
on the morning of the review, anly a short presentation was given on
this topic. The participants then organized into discussion groups
which focused on five areas: the node model, the process model, the
input/output, the security model and non-technical issues. The
sunmries of the discussions held by these five groups are found in each
of the following five sections. Late in the afternocon everyone met back

together to hear arxi discuss the reports fram the separate groups.

General ocamants reflected that there has besen considerable improvement
in the document since the Version (1.0) which was reviewed in September.
The semantics have besn addressed more campletely and consistently.
Same deficiencies in same sections still exist and were pointed out by
the Hyamnis reviewers. All of the models have matured; the node model
has becans very stable (aside fram the introduction of security and
access control mechanisms) and the process model seeamsd to meet with
general acceptance. Much work remains to be done on the input/output
section, but many helpful suggestions for directions to pursue were
provided by the reviewers, and the next version should show maturity in
this area as well. Very few of the caommants received indicated that
significant interfaces were missing, and, of those mentioned, most
cannot be easily provided in a portable manner.

e LN T T AT T AT N NI A RN S A 2 LT e N N N N Y

WA

g7

s

i

i
(AR

"-'-
bl

16

-
.
*a"

g
?' [N
.

YA

~ &

e |

r:

P
Sal

5 I B A

2

X |

r“,
T
Ve

".-.'._ M

e

AR AN

,‘E

W T R I I PR ST TS T
G, SARIGCLLGAS 50

PP . e Nt .
. -‘..‘.I"'Q‘ x"."'p‘.i._.'.\." LA

N

R R T At
-y <y .-. ,.\}\ -'

ST AR g S AP W A A 4

LN

F L 0 AR M S e A - o/ s MR b ol avep]

3-2

AL A A AR IR R L
S AN AN I NN NN T AR 3 3

"

IR
N,

0 o
2 b"-l'a'.'

SECTION 1: NODE MODEL DISCUSSION GROUP

The main topics addressed by the discussion group on the node model
were:

a) support for distributed implementations
b) concerns of intra- and interoperability of tools
c) the interrelation of KAPSE/CAIS/Run-time Envirorment

[}
A, 8, % % 4 %

NENE

Several other issues regarding specific concepts of the CAIS were
N discussed, and recamnendations for further refinements of the CAIS were
made.

The general atmosphere c® the discussion was ane of contentment with the
concepts of the current node model, mixed with concerns about
implemntation and efficiency aspects on distributed systems. There was
a uniform expression of the need to expand the CAIS in the area of
predefined attributes and relationships.

l. The CAIS mst provide support for distributed envircmments.

Given the clear trend toward distributed systems of
: workstations as the system oonfiguration for program
, development, there is much concern about the implementability
- and the appropriateness of the CAIS for such distributed

Two situations must be distinguished:

- a single CAIS implemented on top of a distributed system,
and

- - commmnication between CAIS implementations on different

- components of a distributed system.

: With regard to the former, the issues of conmmnication among
ﬂnmmmsamhrqelyhiddmwiﬂ\inﬂngus.whim

MM,

w

server are problems that need to be solved by the CAIS
: implementor, rather than at the CAIS interface level. ~
N Curently, the CAIS has no known deficiencies that would
> preclude either implementation. There is, however, a need for
resource control mechanisms within the CAIS to allow the user .
- to exercise control over which system camponents are tasked to e
- perform activities cn his/her behalf. These interfaces fall in w
- the category of deferred CAIS issues, mainly because the nature
- of such interfaces is as yet uncertain. Nevertheless, their ",
importance has to be acknowledged and work to define such e
interfaces should be started as soon as feasible. =

sa v s

"
3-3 m

-

A JCAIER AL SR SR T . B . . LI N e YT T O e o 54 Ty
S NCH O ‘o”q.‘ v'\‘.if.tf\."--.".'o - - . .,. . z " .t.-. AN ‘\‘\ \.“".‘a.".‘."\

<
d

2.

With regard to ocommnication between different CAIS
implementations, two levels need to be distinguished:

- the “physical” mechanisms for cammmnication
-~ the interoperability between tools residing on different
CAIS implementations.

These issues are not unique to systems oonsisting of
distributed workstations, but also arise in general, when data
and tools are to0 be exchanged between different CAIS
implementations.

With regard to the commmnication mechanism, two proposals were
made:

a. The ISO Model should be examined as a possible basis for
comon cammmnication interfaces between CAIS
implementations. If this examination determines that the
model is adequate, CAIS interfaces should be added that
reflect the various levels of the ISO Model.

b. There is an urgent need for the specification of an
external form for nodes, attributes, and relationships,
very mxch like the specification of an external form for
DIANA, so that node structures can be exchanged between
different CAIS implementations, given CAIS-specific reader
and writer programs for this external representation.

There were concerns regarding inter—- and intracperability.

There was a general opinion in the working group that the CAIS,
as cwrrently defined, provides little support that would
enhance the intercperability or intracperability of tools,
since very few of the attributes and relationships important
for communication among tools are predefined by the CAIS. The
CAIS, in order to be true to its objectives, must include such
camonly defined attributes and relationships. As a concrete
step toward this goal, members of the working group agreed to
send recommendations for such attributes and relationshipe to
the MIINET account CAIS-COMMENT@ECLB; the public at large is
invited to do s0 as well. while CAIS 1.3 provides a framework
for the texminology used, CAIS 2.7 should define a substantial
set of attributes and relationships with predefined meanings.
As an interim solution, agreement on common attributes and
relationships ocould also be reached among the members of the
CAIS Implementors’ Group, which should be a prime source of

FOS A

34

AP AR TR Y o, (X L AU AT RRRY

NN A R

5 L& 2 o,

RN AT

* gl P

o T g B, Fi o Sl g A A i St v il ne et Serlit g My i S Sl SEpe Wi Ay S Sy A YA e e gt S S S SAE TN AR W S W rd

3.

valuable contribations.

It was pointed out that the ocbjective of CAIS 1.3, apart from
providing a general framework, was mainly to support

the tool support for a given activity. It was therefore felt
by the CAISWG that such attributes and relationships can be
predefined only with the widest possible participation of
arrent and future CAIS- and APSE-implementors.

what is the interrelation of CAIS/KAPSE/Rmn-Time Environment?

A lengthy discussion dealt with the interrelation of the CAIS
with the STONEMAN KAPSE model arnd with the Run-Time Enviromment
of Ada programs. This discussion showed the diversity of
perceptions of wvhat constitutes a STONEMAN KAPSE and how the
CAIS relates to this model (a that has already been

consequence Ada semantics or satisfiable in any reasonable
implementation of the Ada run-time envirorments.) One argument
that was also discussed was that, if that interconnection was

Y

oY

d B

)

&)

Vo)

" TN
> » 0

..
% 4

r.e
L

‘PL e

IR AN

L"af'-{

4.

5.

- e

"imperative” about run-time issues (as opposed to the current
approach of "don't hurt existing implementations™ by putting
requiremsents on them). The results were inconclusive; opinion
was divided as to whether or not this should be done.

tools. Efficiency of the CAIS should not be measured by its
own efficiency, but rather by the efficiency of the tools based
on the CAIS compared against similar tools without CAIS

One area in which the CAIS may cause undue loss of efficiency
is the area of revision control. Currently, the CAIS has no

mechanisms be included that allow transactions to span over the
consecutive execution of multiple processes.

b Dl Ml Rl Sl Wl Akl AR Ml B SRl G A snun s ate ans

o,
-y
o*
L=
-,
-
O
2

alal el ool a s

F NN

6. The "current user” and “"user” concepts should be renamed.

The CAIS is currentiy predicated on an administrative
organization that considers the individual user as a focal
point, as demonstrated by the concepts of “current user” and
"user" relations. However, several existing operating systems
used for program development are more oriented towards
"projects” as the main administrative focus, with |users
connecting or logging into particular projects. Although
“rrojects" can be in a CAIS implementation by
considering a "project” as still another “user", it was
recammended that the terminology of "user” be changed to a
terminology less biased towards a particular administrative
view.

SECTION 2: PROCESS MODEL DISCUSSION GROUP

was that the CAIS process model is
and not far fram its goals. The coments were of the nature of
the

underlying assumption that the

PRSI A A

ASASLUL LY (SR LA AR G, (5, LS L O

———— '*(‘!

g 2. More states are needed for reporting process status.

- The process states transition table given in Table II of CAIS
t:’ 1.3 (page 78) does not show how a process is created. A new
" row needs to be added for the operation of creating a process.

A new colum needs to be added for processes which do not
exist, in order to make the state transition table camplete.

Sane comments omcerned a wish to be able to distinguish
between a process which is in the READY state, but which is
. waiting for resources ar rendezvous, and a process which is in
b the READY state and is actually executing. This desire stems
from a need to monitor the progress of a process.

AR

Some comments oconcerned the campletion status enumeration
values. The addition of the value COMPLETED, distinct from
e ABORTED and TERMINATED, was suggested. The Ada Reference
t Manual describes a task as "completed but not terminated” if it

has campleted the execution of its sequence of statements but

is waiting for the termination of a child. It was pointed out,
o however, that CAIS processes are closely analogous to Ada
N programs, which may include many tasks, so this distinction is
not appropriate.

3. Some temminology is ambiguous.

< In the description of the semantics of ABORT PROCESS as well as

: other places, the term “"descendant"” is used. There is
. ambiguity about the meaning of the term. Does it mean "a

e process I created” or "a process I am the parent of"?

4. Interrupts should be integrated into the node model.

- & The suggestion was made that the receipt of a signal should be
Lo able to change the priority of the receiver. However, the
benefit gained was judged not to warrant the cost.
oo The suggestion was made that processes might need an analogy to
' the terminate alternmative for Ada tasks. But the user can
design it using existing facilities, so it is not needed in the
i Q\IS-
=
.“

The suggestion was made that the CAIS could be made more
-. consistent if the interrupts were nodes themselves, just as
é queues are, because an interrupt is a named entity that is not
currently integrated into the node model.

<
<
<
v

Ca®e "'’ o a’aabe®y R T R N S TR e m R Rt et mamar.s el .
LSO A e e AT A e Tt e T TR T e R LI o Tt e Tt et R R R R Rt I S IR S

A SN LR SRR S -
CAEPE 2PN PN N IEIENE SN DN RN N R I N R O I e S S A R e S S S S Sty

IR DA R £ PN AR IR I A SRR W s N AR S i Badt Bttt iiec il gl n 4 e B S Piie Srte 4 Ra i, S Sy S SO0 S v A e S M B it e e S ’Zw

.
l‘
*. =~
A P!
- %
&N 5. More explicit interaction between the CAIS and its hardware
(both host and target) was called for. =
; -
~ There is a concern that the underlying hardware may fail and
. destroy the tree structure of the CAIS, indicating a need for a -
A mechanism for reporting hardware problems. However, this -
L~ seemed to some participants to be outside the scope of the i
QaAlS. —
There is a desire for explicit support for targets and
distribution, so that the user ar tool designer can have some
control over the assigrment of processes to logical processors.
SECTION 3: INPUT/OUTPUT DISCUSSION GROUP
The main topics addressed by the discussion group an Input/Output (I/0) ny
weres &
5 a) the tape standard used
- b) the terminal capabilities
& c) status information. a
N
Tbegeseralaﬂmsphereofthedimsimirxncateet}nttheI/Osecum :
needs substantial modification before it is appropriate to establish it
as part of a MIL-STD. There were a large nurber of comments dealing
with lack of clarity, missing interfaces, inadequacy of interfaces, N
inconsistencies and other deficiencies. e
l. The wse of a different magnetic tape standard for the CAIS -
. model should be considered. -
N Several pecple in the group indicated that there are problems
: in assuming that the ANSI tape standards can be used to define {~
< a mechanism for transporting source code fram one APSE to =¥
ancther. In particular, they sited that tape drives by
different manufacturers deviate slightly from the standards, -
thus making them incompatible. It was also noted that the ANSI i
standards cause a large amount of tape space to be wasted.
Itmrecannandadbythegm:pttat'mpbeusedtoprwidefor o
of textual data. This method eliminates the -
pmblem of defining the "exact" positioning of data on magnetic
media (inter-record gaps). :
2. There are problens with inconsistencies. :
z
3-9
m®

i)

v v
et late e

s

O

-
NS

P} ” - .:'

A

SEYN

3.

4.

5.

6.

It was noted by the group that there are inconsistencies among
the interfaces. This is a problem that deserves much attention
before the I/0 section is proposed as a draft. (They noted
that the different sections are inconsistent with each other as
well.) The interplay between CAIS TEXT IO and the other I/0

packages is poorly defined.

Quene nodes were well-received.

The concept of queue nodes was favorably received. In fact,
this was one of the major deficiencies that people had come

prepared to camplain about.

Additional interfaces were proposed to address auxrent
deficiencies.

Additional interfaces were presented as neccessary for a useful
1/0 model. Among them were file node attributes (file/queue
size, device type, terminal class, terminal capabilities) and
host buffer control (flushing, forcing to disk).

Additional terwminal capabilities were suggested.

It was suggested that interfaces be provided that enable a user
to determine (1) which function key has been pressed, (2) which
class of terminal is associated with a particular node, and (3)
wmm"mecuy"swwmmmmm

Get/Put should be more carefully defined.

There is a desire for better status informmtion in the event of

]

There was considerable discussion about the problems of trying
to recover fram I/0 operations that fail. Exceptions do not
provide encugh information for a programmer to inform the user
of his/her program what actually caused the I/O operation to
fail. There is a need to provide an interface that can obtain
information fram the host O about the reason for the failure.
There was no resolution of this matter as no "transportable”

7.

The following miscellansous topics were discussed only briefly.

* Industry standards (e.g., GKS, TCP-IP, 1SO commmications)
should be considered in the design of the CAIS.

* The byte stream used in TEXT IO should be recognizable. That

is,
and

the CAIS should define the meanings of all byte sequences
how they are to be interpreted.

* A single file should be defined upon which all I/O cperations
are performed.

* Is windowing (like on a LISA) possible with the current
design? (It was determined by the group that it could be done,
but would be hidden within the implementation.)

* There is a nesd to query the capabilities of a terminal. In
particular, a programmer needs to be able to determine which of
the “"terminal I/0" interfaces are efficiently supported and
vhich are inefficiently supported.

SECTION 4: SECURITY DISCUSSION GROUP

The main topics addressed by the discussion group on security were:

a)
b)

Other

CAIS dictation of security policy
mandatory versus discretionary security.

issues were discussed, and a set of recamnendations was made.

These recamsendations appear at the end of this section.

The general atmosphere of the discussion was one of concern over the
tight coupling of security policy with the current CAIS interfaces.

1.

Soms were concerned that the CAIS dictates a certain security
policy, as well as a model for implemsnting that policy.

It was felt that there are several problems with this approach.
The CAISWG has used the DoD Trusted Camputer System Evaluation
Criteria as the basis for the mandatory and discretionary
security aspects found in CAIS 1.3. This guide is published by
the Departmant of Defense Camputer Security Center. It
provides "a uniform set of basic requirements and evaluation
classes for assessing the effectiveness of security controls
built into Autamated Data Processing (ADP) systems." This guide
itself does not require a specific policy; it only establishes

&2 (PR T

20

s

A
+

2 4

RN

intoanduput possibly into an appendix, there were
as to what should happen for CAIS Version 1:

a. Kesp the current security in the CAIS as a basis for
further work and cammercial implementations; make Version

o

» If you can’'t prove that it's secure, leave out the current
security mechanisms; define generic interfaces (what
exceptions will be raised), allowﬁcthd:ofvidbﬂity
(see next topic) and possibly leave security mechanisms in
an appendix.

Should the CQAIS security policy and mechanisms be visible to
the user or tools?

It was felt mtmmsmmmwmmmumto

choose to make same nodes not 'visible' to same subject (the
CAIS already allows this) and that it should let the

e e

3-12

e Nw»i}ihmxmmﬁg

PR A A 57

OIEL B AN P

a4 0

e

3.

and a mechanism for doing it. Sone also felt it is not
necessary to have the security information visible to the user
(i.e., classification labels in CAIS 1.3 are node attributes).
It was noted that a tool writer and user should not have to

is not in support of portability, while scme felt that portable
programs should not rely on a specific security policy or

Should sandatory security bs ssparated from discretionary?
Scms felt that the CAIS should treat DoD security (mandatory

sst of statemnts was dsvelopsd by the group to form an
‘official recomssndation to the CAISNG'.

a. The security policy model should be separated frum the CAIS
model

b. The CAIS documnt should not state that the CAIS supplies a
“security mechanism”, as the validity of such a system
requires thorough analysis and proof. The term “security

system” should be changed to "protective controls".

c. Conditions under which the exceptions Access Violation,
Security Violation, and Name Errcr are raised “should be
as recamendations; final specification should

be left to the implementor of the system.

-] R AVl ESE J LR 4
S RALY

'l f{ '0" Xy

D IRINEN A S Ay TN T h]

4 AN <o T I """";”"‘"{'\.

2 g3 =3 I

&

CH G G &

£ 02

Lees

3-13

L & |

€N TV T T

e wm &
EURNI I, R SO S Y R P PRy A i it T it Pt i JPut A M-St sl Mt Yl e J et S

d. In oxder to isolate security mechanisms in the CAIS,
security information should be stored as attributes with
limited functionality (not accessible by users).

e. The CAIS should allow different security policies; it
should not mandate a specific one.

f. An inmplementor of the security kernel should be required to
specify functionality and use of the kernel and to specify
the that are raised at the CAIS interface and
under what conditions they are raised.

SECTION 5: NON-TECHNICAL ISSUES DISCUSSION GROUP

a) the push for a military standard (MIL-STD) in January 1985
b) the need to establish a standard at all
c) the expected cost/benefit of such a standard.

The general atmoephere of the discussion was that such a conmon set of
interfaces would be desirable, but that more time is required to ﬂ
properly address all of the issues involved.

of

It was felt that viable public reviews could not be achieved if
ﬂnQISmtobemdeaMl’L-Sleoquiddy.

LRI [NGNS
‘n I ! :.
L
F

.......................................

3. Mhmﬂ-mm.aﬁmm.

The sheer effort required to take care of all the missing
details and to coxrect all typos «TOorS wWas
felt to bes too great for the

c
;
§

4. There is oo tecdinical requiremsnts statemsnt associated with

It appears that the CAIS is a "solution" document, but the
technical requirements document to which this interface set is

B SO 28 e av

ALS and that ittodtiuwmgolymw
betwesn those two systems about what a “KAPSE" was,

level and content. A requirenants documsnt is being t-d
mmmmmwamvmz.uniu
dsvelopment, although in parallel with the production of CAIS
Version 1, has had same inpact already.

S. l'hﬂnmm-dnaw Wihat doss the DaD expect

R =& €&

Most of the group discussion was spent on this set of concerns.
The discussions centered around a few main issuss.

23

a. A CAIS would be good in the long run: Two vOtes were taken
in the morning session. In these votes, a clear majority
(sbout 3@ to 5) felt that the CAIS (i.e., same set of
comon interfaces at about this level) would be useful in
the long rvn and of bmnefit to the whole camanity.
However, the vote was wanimous that Jammry 1985 was too
early for a military standard; the vote was on the
question "is a MIL-81D in Jammry 1965 premture?”

G 4)

D

A7

¥

;
i
3
!
:
2
g
5

the CAIS would mean a considerable delay and
everycne; it is easier to transport o even ro-i.uplcumt
one tool than it is ¢t©o re-do one's wole
tool-suite/host-system to conform to the CAIS.

%
§
E
|
il

|
|
i
-
i

o

s

)
3

Ny ;’i FRV N R A A LW AT R A R R e W e e LT A e e St) Oy =y % i L% 2% LN
*‘ R ey % ey, ;f-‘v._?-,.-z A 4 N 4 6 AR AN, Y ho X '3 55; i ¢ A’y ‘” \.;_‘

§

i LF Mmmmmmmmwm

M T_ﬁ ipsedan

R Mmfm :
_ nd mmm 1, mmam@mmew 26
t mmmmm 8 y i i mmm

.m,: il i

s m ; mmm

1t! M mmmmmm m
E mmmmwm 1§85

m
sl aXRE2EsY 29abll mmm@

o

|

that the expected

benefits of the CAIS excesd the vision of a

|
B3
;

however

in mind,
they mst be “"amxtized” over many projects

kept
mwmmumwuam.

It must Dbe

contractor;

P ey,

3-16

Given the

and
their
of interfaces but the

It vas
work that is
retrofit
a caouon set

capture

of

This plan must handle the near-term problem
of starting to get the CAIS in use while tha
existing complete, integrated

new

mt Dbs aexpected tO

putting
do not want to

successfully in
The real fear about making the CAIS a standard is that it

will be recklessly or inappropriately applied:

include the CAILS.

the ¢gpportunity to

should be applied to new projects,
should

facilities.

vote in favor

T RN N S AV S, VAR

e.
.
i '.

o 2

W

-

NS

L)
Q‘

N

EAC A
e s

sentiment against a near-termm MIL~STD, the question was
asked "If not a MIL-STD, then what? Would it be better as
an IEFE or ANSI

£
8§
E
2
E
!
!
;

R
é
:
g
8
R
]
:

-

o

- The oonclusion was that the policy used in applying this 3

- standard must be ve enough to apply it discriminately. &
Particularly in the first year or two, it would be much more

N appropriately applied to contracts for prototypes of tools and S

E
g
E
|
[
¢
i
:
B

- system nor any known interest in establishing such a charter. =
7. VWhat are the real prospects for achieving CAIS wvalidation? ‘%
* The prospect of CAIS validation appeared to several S
v discussants for two main reasons: (1) the perceived camplexity -
o of the CAIS and (2) the perceived lack of technology to define _
o the tests and experiments to achieve it. The basic consensus -
N was that we do not know enough yet. During the conversation it o
, became apparent that pscple were variously talking about one or
.~ rore of at least three things when they spoke of “CAIS)
g validation": =3
1 - validating that an implementation meets the specification Ny
. (this is what the KIT, KITIA and E&V tesams mean by "CAIS v
. validation”) el
- "validating" the CAIS concepts, i.e., prototyping &
.,)
317
o

TRTA St T MR e " a T ATET e TP Ta 0B Tata m B . mm L m L tam, e, e

P L T P e et taca gt .
\‘ b e {ﬂ’\'_$' AT T R WA T A e

- LA -y W -
_1. c‘f 'H'..

X
=

b)

SR 775

- oy

T

i

4-4

o LA~ =
L 9
-

-

nl)

L}
¥a'a

L S h TR Y
RS BEQUN IOy IR 2

- "validating” that two real CAIS implementations really
achieve transportability; i.e., showing that the fact that
two inplementations conform to the CAIS means that they
really can share tools.

There should be a dexnstration of the distributivity of the

There was special oconcern expressed over what was called the
“monolithicness” of the CAIS; i.e., thse words concerning
conformance in the awrrrent draft imply that an implemsntation
must have all the interfaces exactly as shown, with a few minor
exceptions in detail. It is recognized that it is not
practical to require absolutely every package of absolutely
every implemsntation, yet it is desirable for all things

» * ..

~ el gt ot v
.gf (o
el Vs o

e

o~ 3 . A
"R P ALE I R

MO Wit X

LR R R

LTt

| AP .

P

R R

g e P s

PROPOSED MIL~STD-CAIS
31 OCT 1984

NOTE: This draft, dated 31 Oct 19684, prepared by KIT/KITIA
CAIS Working Group for the Ada Joint Program Office, has
not been approved and is subject to modification. DO NOT
USE PRIOR TO APPROVAL. (Project IPSC/ECRS 0208)

MILITARY STANDARD
OOMMON APSE INTERFACE SET (CAIS)

VERSIN 1.4

KIT/KITIA

CAIS Working Group
for the
Ada Joint Program Office

(Ada is a Registered Trademark of the Department of Defense,
Aa Joint Program Office)

AREA ECRS

PAIOTAN \ NI NN -;.:,-}v A R S A ST TR TS A RSy R LY

-

ST

b B3 3 &d

RA

L

sy

4

=

PROPOSED MIL~STD-CAIS
31 OCT 1964

3

LA

O

DEPARTMENT of DEFENSE
Washingtion, DC 20302

¥

A

Cammon APSE Interface Set

Ep o J;'

PROPOSED MIL~STD-CAIS

O

1. This Military Standard is approved for use by all Departments
and Agencies of the Department of Defense.

2. Beneficial comments (recommendations, additions, deletions)
and any pertinent data which may be of use in improving this
wwumwm/nmmsmmm
and sent to Patricia Oberndorf, Naval Ocean

. Code 423, San Diego, CA, 92152, by using the self addressed

E Standardization Document Improvement Proposal (DD Form 1426)

D
Q. Ny

(A

appearing at the end of this document or by letter.

AN ...
‘.’l [oAl
el ,._l’-

-,
| e

'-‘ ii
S 20

v, F“‘Z Lo

A

i _.L\j‘-i‘-L'-i\'i\&s\\‘.\ \-.\'L‘Q‘ \.‘L\j

avs 8.4 &

P R e

- -

E

The initial effort for definition of the CAIS was bequn in September
1982 by the following members of the KAPSE Interface Team (KIT): J.
Foidl (TRW), J. Kramer (Institute for Defense Analysis), P.
(Naval Ocean Systams Center), T. Taft (Intermetrics), R. Thall
(SofTech) and W. Wilder (NAVSEA PMS~408). In February 1983 the design
team was expanded to include ICDR. B. Schaar (Ada Joint Program
Office) and KAPSE Interface Team from Industry and Academia (KITIA)
: H. Pischer (Litton Data Systams), T. Harrison (Texas
Instrunents), E. Lamb (Bell Labs), T. Lyons (Software Sciences Ltd.,
U.K.), D. McGonagle (General Electric), H. Morse (Frey Federal
Systems), E. Ploedereder (Tartan Laboratories), H. Willman (Raytheon),
and L. Yelowitz (Ford Aerospace). During 1984, the following pecple
assisted in preparation of this document: K. Connolly (TRW), S.
Ferdman (Data General), G. Fitch (Intermetrics), R. Gouw (TRW), B.
Grant (Intermetrics), N. Lee (IDA), J. Long (TRW), and R. Robinson
(IDA). Additional constructive criticism and direction was provided by
G. Myers (Naval Ocean Systems Center), R. Olivier (Informatique
Internationale), and the general memberships of the KIT and KITIA, as
well as many independent reviewers.(The Ada Joint Program Office is
particularly grateful to those KITIA members and their companies for
)ﬂnﬁmaﬁmﬂutsigﬁﬁcanﬂymibuteﬂtomis

|

|

iii

g

N = VR

£

&5

s B &1

sl

L OV BV |

[

2 LAY

£

¢
el

X

-
»

L)

P
.

o b o b4 gue o L

PAL_g

P R gk iy 4

LM et it i oo

MR S R okt)

Ltk ghin e R

-

Nl

w WL

T

e TR S A A AT A AN R N A e N A oK I

- -t NN wn

ard deferred topics

~ONm
M -

1
1
1.
1
2.

31 OCT 1984

[To B "a B <]

2.1 1Issues of documents

2.2 Other publications

DEFINITIONS

GENERAL REQUIREMENTS

3.
4.

S TEXT IO

control

and mandatory access control
a role
access relationship and the privilege

attribute
tory
ling
mmnuymmu
uﬂm@m
QAIS file nodes
tics
ti
tl
ti
ti

44444445566666

N L R L L T R T R R R

A4
CER S

........

.Hu) Fh

iv

3-22

ol

et Te e
J"..\:l-‘_l-‘ ‘;‘F"

Y
NN

XYy

s

S
WAL

{

g

oM
Y,

R % Ek e TV G A e e m it A b AT Nia W W "CN 3 & - £ [T Farapty - Sate Jriky kL, Sl J g A sy Y S =ETr P At i, W R e Ky R I e

» ,
SN) PROPOSED MIL~STD-CAIS L
) 31 OCT 1984 4
2]
N .

"
s 5. DETAILED REQUIREMENTS 34 _
» 5.1 General node 34
) 5.1.1 Package CAIS NODE DEFINITIONS 35
Yo 5.1.2 Package CAIS NODE MANAGEMENT 36 ;
o 5.1.2.1 Opening a node handle 41 Z
i) 5.1.2.2 Closing a node handle 43
5.1.2.3 Changing the specified intent of node handle 3 -
. usage 4 e
- 5.1.2.4 Examining open status of node handle 44 -
-~ 5.1.2.5 Examining kind of node 4
’ 5.1.2.6 Obtaining unique primary name 45 -
L S5.1.2.7 Obtaining relationship key of a primary {
relationship 45
" 5.1.2.8 Obtaining relation name of a primary (-
o relationship 46 -
x 5.1.2.9 Obtaining relationship key of last relation -
(o traversed 46
e 5.1.2.19 Obtaining relation name of last relation ¢
B traversed 47 ,
- 5.1.2.11 Obtaining a partial pathname 48
2 5.1.2.12 Obtaining the name of the last relationship in
. a pathname 48
- 5.1.2.13 Obtaining the key of the last relationship in h
- a pathname 48
s 5.1.2.14 Querying existence of node 49
5.1.2.15 Querying sameness 50
.;:: 5.1.2.16 Obtaining open node handle to parent node 51
) 5.1.2.17 Copying a node 52 3
. 5.1.2.18 Copying trees 53 >
oy 5.1.2.19 Renaming primary relationship of a node 55 =~
S 5.1.2.20 Deleting a node 56
5.1.2.21 Deleting primary relationships of a tree 57 :
- 5.1.2.22 Creating user-defined secondary relationships 58 &
5.1.2.23 Deleting user-defined secondary relationships 60
o 5.1.2.24 Iteration types and subtypes 61 Ny
R 5.1.2.25 Creating an iterator over nodes 6l ~3
5.1.2.26 Determining iteration @status 62 -
D’ 5.1.2.27 Getting the next node in an iteration 63
=2 5.1.2.28 Setting the @CURRENT NOCE relationship 63
- 5.1.2.29 Getting an open node handle to the :
% @CURRENT NOCE 64
X 5.1.3 Package CAIS_ATTRIBUTES 65 Zﬂ
- -JW
< v 53
™ l
., L-"“
"
Yo}
3-23 ™
4]
R R SRR X

ol O G

VaThy T

CR TR

ting path attributes

eting node attributes

pmmmmMm

node attributes

path attributes

node attributes

iteration types and subtypes

Crenting iterators over node attributes
Determining iteration @status

ﬁm
Getting path attributes

tj.ngmdeattrihxtu
subtypu constants, and exceptions

(btainmganiteratoroverrelatiauhip
hamemmxusommx

Getting the next node attribute

mmmm

~N™M

3558 RFAIREEREPHESIY §

4 Detemining the nmuarber of cpen node handles

5 Determining the muiber of I/0 units used
Determining the time of activation

7 Determining the time of termination or

6

12
123456789m111 1334 p .lu’u.iw drirm~ 4
3333333333333 LT N “ANNNAN 22222222222222
e o e o o ¢ o ¢ & s o L d LI LR e ° o ¢ & o * o o o
m 1111111111111 At ANANNN AN NNNANNNANN
* o e & o e o * o o » & * ¢ & & & o &+ & 5 5 ®» o & o
o4 5555555555555 NNV N VNN D! N NN NN NN NN NN
ml
™
A 24 W 40 B L3 o D e Ul R WY L s o
> - T vy oy e T} (TR | e ate s amw”

3-24

l.\
. a1
.

R

. -};.Q_..,‘-J-; .',: .“.i-l.#-q-"..- “-'J' -

*o

PROPOSED MIL~STD-CAIS

31 OCT 1984

5.2.2.18 Detemining the tims a process has been active

CAIS Input/output

3
5

0

and exceptions
, constants, and exceptions
anopnnmdohuﬂhfzmaﬁh

Syndmm:gmmﬁﬂumm

, constants,
Establishing a LOG file

a direct I/0 file

s
I Mmmmm m

123 123 123456789 12
1111222233333333334555
3333333333333333333333
5555555555555555555555

CAIS DIRECT IO
ung

Pu:kage

Setting
.11
.12 Enab
.13
14
Package

3
4
5
N
o7
.8
9
.10

L]

[L o

5555555555556
3333333333333
5555555555555

144

Reading all available characters fram a
5.3.6.15 Detemining the mmber of function keys that

66666666666666
33333333333333
55555555555555

31 OCT 1984

145

were read

£35333A4AARARRRR04

, constants, and exceptions

Setting the active position
size of the texminal
a tab stop
a tab stop

the active position
the

CAIS_PAGE_TERMINAL

Advancing the active position to the next page

16

1

.18
.19
Packaga

Advancing the active position to the next line

Types,

3

3333333333333333333
55555 55555555555555

159

Reading all available characters fram a
5.3.7.15 Detemmining the mwmber of function keys that

A AN 0 X, |

T LRAIRTT

160
162
161
162
3-26
OB OGN0 SRR

.« o
._.-‘ ‘-.\-.\-

T TR It

TN T

a7 \.'. ‘P.. ‘\.’:"':3‘.' Ky

x

were read

Determmining function key usage
.17 Detemining the name of a function key
e

7.16
7
7

U

«3.7.18 Deleting characters
oy

.3
.3
3
)

5
5
5

: 3"‘5.

g

.--\

AR H Lk

\“ LN

LR AT 304

Ty b JE NPT o) e pe Yx, .

R O 0 20 S &5 (B &0 5 D) 0P 1 R kR

PROPOSED MIL~-STD-CAIS
31 OCT 1984
162
le3
164
165
165
166
167
le8
168
169
170
171
17
172
172
173
173
174
174
175
175
176
176
177
177
178
178
180
181
181
182
183
183
184
185
186
187
188
190
192
192

1
§ 5
1} 3 m
mmmwmmmmmwm
1

S LIST UTILITIES
ix

mm..,am
535
mmm 1

m
m123456789mnu

9999999999999
3333333333333
VLDV VVVVOOOD DOV IV ODOODNnYn 5555555555555

Determining the size of a form/terminal
«3.8.17 Detmd.nimifﬂaamqnnﬁarq\nm

|
|
M
i

«3.8.15 Determining the termination key

.3.8.11 Erasing the form

«3.8.16

5.4 CAIS Utilities
5.4.1 Package CAI

193
194
194
194
195
196
196
197
198
198
199
199
200

the kind of
list
item
string
item

list
list or
of the
a named
of a
a list

Types, subtypes, constants, and exceptions
5.4.1.2 Establishing a mull-list

Extracting an item
5.4.1.8 Deleting an item from a

list item

Merging two lists

5.4.1.3 Converting fram an external list representation
S.4.1.4 Converting to extermal list representation

5.4.1.5 Inserting an item into a list
5.4.1.6 Resetting the value of a namsd item

5.4.1.9 Determining the kind of

5.4.1.1
5.4.1.7

31 OCT 1984

201
203
204

Appendix A Predefined Relatioms
Relation Namss and Attributes
B CAIS Specification

Index

3-28

Rl AR TR & 8P

A e 0 v SEER1R s

YY) T MR A SO, Syt S S P P P S SR e no,

VPRI
',‘:l":;'.s"i

- a
AV

RS)
<. "‘f[‘

o’
tala

N I '.‘v.'.ﬁ .. N

LA

»
.

"
v..
»
-
g

L]

,
.

L)
7-
N
2
[

.
'a "

Ll
ot

O T 5

ER N

' ARG) AA

0 ‘:'\ '0“5’.“".“'." <

N S YRS W R 5 SE R

IS M AR

L% % rass Y X XA

ety

PROPOSED MIL~STD-CAIS
' 31 OCT 1964

1. SCOPE

This document provides specifications for a set of Ada packages, with
their intended semantics, which together form the set of common

support
associated with program generation such as editors, camwpilers,
mmber of independent but inter-related programs (such as a

[1] Requirements for Ada Progranming Support Environments, “Stoneman";
of Defense; February 1960.
8 KAPSE Interface Team: Public Report, Volume I, 1 April 1982; p.

TS W

o R B3R e

c. Input/Ouput. This area covers file input/output, basic device
input/output support, special device control facilities, and
interprocess commmication.

d. Utilities. This area covers list operations useful for
parameter and attribute value manipulation.

1.3 Excluded and deferred topics

During the design of this version of the CAIS it was determined that
interfaces for envirorments which are not software development
enviroments (for example, interfaces on target systems) and interfaces
for multi-lingual envirorments should be explicitly excluded. It has
been decided that backup facilities will be supported transparently by
the CAIS implementation. While the interface issues of most aspects of
environments were oonsidered, the camplete resolution of several areas
has been deferred until later revisions of the CAIS.

Configuration management - The current CAIS supports
facilities for configuration control including keeping
versions, referencing the latest revision, identifying
the state of an object, etc., but it does not
implement a particular methodology. Currently
deferred is the decision whether or not to have the
QIS enforce a particular oconfiguration management
approach and if so what particular methodology should

Ot i

T T

define inter-tool cal or data formats
such as the data format within the campilation/program
library the text format within editing

to place constraints on the run~time to provide
process exsecution information.

Intercperability - [The current CAIS provides only
a4 very primitive, text-oriented interface for
transferring files between a CAIS implementation and
the gperating system on which it may reside.] It does

target

Typing methodology = The aurent CAIS provides
attributes and relations which can be used by tool
sets to constrain nodes, attributes and relations
but, it does not enforce a particular methodology.
Currrently deferred is a decision whether or not the
CAIS should enforce a particular, more camwplete typing
methodology and what kind of CAIS interfaces should be

Rttt '._‘_-.-.'.1 LU A S P A
98 ¢$_.‘-..‘-_ﬂ-'.\ D QOIS VSR NEAE W A

&

.""

& &2 r

e) &2 FR 32 g2

i 74

;w -

W

v T A 25 8

ASATENA EEEOCCGEE WEROCY B A2

R |

[
aTaTs

B kol AN A A NSRS S SRS PSRNV
n: N [O F -7
.. \‘.:'J'J ‘: "2

4
2
2

PROPOSED MIL~STD-CAIS
31 OCr 1984

made available to support it.

Archiving - The ocwrent CAIS dJdoes not define
gacilities for archiving of data. Cuxrently deferred
is a decision regarding the form that archiving
interfaces should take.

3-32

31 OCT 1984

2. REFERENCED DOCUMENTS
2.1 Issues of documents

The following documants of the issue in effect on date of invitation for
bids or request for proposal form a part of this standard to the extent
specified herein.

Ada

(LRM]: Reference Manual for the Programming Language,
ANSI/MIL-STD-1815A; United States Department of Defense; January 1963.

[(STONEMAN]: Requirements for Ada Programming Support Environments,
“Stoneman"; Department of Defense; February 196@.

(Copies of specifications, standards, drawings, and publications
by

specific procurement
functions should be cbtained fram the procuring activity or as directed
by the contracting officer.)

2.2 Other publications

The following documents form a part of the standard to the extent
specified herein. Unless otherwise indicated, the issue in effect on
date of invitation for bids or request for proposal shall apply.

(ANSI 78]: American National Standards Institue, “Magnetic Tape Labels
and Flle Structuwre for Information Interchange (ANSI Standard
x3.27-1978)"; (Application for copies should be addressed to American
National Standards Institute, Inc., 1430 Broadway, New York, NY 19918)

(DACS] - DACS Glossary, a Bibliography of Software Engineering Terms,
GLOS~1, Octcber 1979, Data and Analysis Center for Software.

(I=EE] - Standard Glossary of Software Engineering Terminology,
ANSI/IFEE Std 729-1983.

[(TCSEC] - Department of Defense Trusted Camputer System Evaluation
Criteria, Departmant of Defense Cawputer Security Center,
CSC-STD-@01-83, 15 August 1983.

[UK Ada Study) - United Kingdom Ada Study Final Technical Report, Volume
I, London, Department of Industry, 1981.

ol

g

e g

| &R

. " ."n

3 .‘lf:‘

=

[W] m eq:.‘j.l ;

[ag

i

T
" A

——

p L

3. DEFINITIONS

The following are terms which are used in the description of the CAIS.
Words followed by * are defined by the CAIS document in terms of the
CAIS design. Where a document named in Section 2 was used to cbtain the
definition, the definition is preceded by a bracketed reference to that
document..

abort - [IEEE] To terminate a process prior to completion.

access - [TCSEC] A specific type of interaction between a subject and an
cbject that results in the flow of information from cne to the other.

access checking - The operation of checking access rights with intents
according to the access control rules and either permitting or denying

‘the intended operation.

access ocontrol -[TCSEC =~ discretionary access ocontrol] A means of
restricting access to cbjects based on the identity of subjects and/or
groups to which they belong. The controls are discretionary in the
sense that a subject with a certain access permission is capable of
passing that permission (perhaps indirectly) an to any other subject.
[TCSEC - mandatory access control] A means of restricting access to
cbjects bmsed on the sensitivity (as represented by a label) of the
information contained in the ocbjects and the formal authorization (i.e.
Clearance) of subjects to access information of such sensitivity. In
the CAIS, this includes specification of access rights, access ocontrol
rules and checking of access rights in accordance with these rules.

access control oconstraints - All the information required to perform
access checking.

access control information - The resulting restrictions placed on
certain kinds of operations by access control.

access control rules - The rules describing the correlations between
access rights and intents.

access rights -~ Descriptions of the type of operations which can be
performed (See Section 4.4.1.2).

accessible * - The subject has (adopted a role which has) been granted
access right EXISTENCE to the object.

active position - The position at which a (terminal) operation is to be
performed.

Ada Programming Support Enviromment (APSE) - [UK Ada Study, STONEMAN] A
set of hardware and software facilities whose purpose is to support the
development and maintenance of Ada applications software throughout its

3-34

S S AN S L L SRR AR AR e N O SO I
! 'Lv_}mi;\..n;- PREEFRCR XX OGN A

ket . LY R L UL) A Bl e T eyt R -
ot AN 5 X T i) et a0 R I R P P, o R I - Fag =gl Pk L N A da p U P P,
o e by I g e L

-
v,

o

gt
3 =

PROPOSED MIL~STD=CAIS
31 OCT 1984

life cycle, with particular emphasis on software for embedded computer !
applications. The principal features are the database, the interfaces
and the toolset. >

.i.'.‘.f.}'n‘.'-i—i \

adopt a role * - The action of a process to acquire the access rights
which have been or will be granted by an object to adopters of that
role; in the CAIS this is accomplished by establishing a secondary :
ADOPTED ROLE relationship fram the process node to the role. g

adcpted role of a process * - The role or ancestor of the role that is -
the target of an ADOPTED ROLE relationship from the process node. 2

[W

advance (of an active postion) - Takes place on a scroll or page
terminal whenever (1) the row mumber of a new position is greater than
the row number of the old or, (2) the row munber of the new position is
the same but the colum rnumber of the new postion is greater than that
of the old; takes place cn a form terminal whenever the indices of its :
position are incremented. "

NN
A

N ancestor of a role * - Any group reachable fram the given role via
e PARENT relationships. 4
iy area qualifier - A designator for the beginning of a qualified area.

. associate - To establish a correlation between a queue file and a ij
secordary storage file. If the file is a copy queue file, its initial

contents are a coopy of the associated file; if the queue file is a

mimic queue file, its initial contents are a copy of the associated file

and elements that are written to the mimic queue file are appended to

its associated file.

\r
! N

rPT

attribute * - A named value associated with a node or relationship which
provides information about that node or relationship.

NN

(8

base * - The given starting node of a path. L
contents * - A file or process associated with a CAIS node. N

‘I rl’ “

. current node * - The node that is currently the focus or context for the
)- activities of the current process.

current process * - The currently executing process making the call to a
CAIS cperation. It defines the context in which the parameters of the
.::j call are to be interpreted.

current user * - The user's top-level node.

dependent process node * - A process node which is not a root process

‘1 .‘T’T

descendant of a group * ~ Any role reachable from the given group via .
. primary PERMANENT MEMEER relationshipe. ;5

3-35

..... N e N A

a7 e N R T e e e e
p) 1 Ae?.a.“h PACALA "'“_.~_.‘-_A_‘-‘_’_AA_L_._‘)! ‘}A\l \ \ __:‘ \.-.L‘-.'m\ _\\\

. v v
o ‘.‘l‘. '. PR

R

*J9

- -
i N
ofs

31 OCT 1984

device - A piece of equipment or a machanism designed to serve a special
purpose or perform a special function.

device name * - The key of a primary DEVICE relationship emanating fram
the system node.

file - [LRM 14.1.1 - Ada external file] Values input from the external
envirorment of the program, or output to the envirorment, are considered
to occupy external files. An external file can be anything external to
the program that can produce a value to be read or receive a value to be
written.

file node * - A node whose contents are an Ada external file, e.g., a
host system file, a device, or a queue.

group *, group node * - A oollection of roles represented by a
structural node with emanating relationships identifying each of the
group's members. Agmupm:bernnybeamertop—lmlmde.apmgram
node, or another graup.

identification -~ A reference to a node provided by a pathname or a
base/key/relation name.

illegal - A node identification in which the pathname or the
relationship key or relation name are syntactically illegal with respect
to the syntax defined in Table III.

inaccessible * -~ The subject has not (adopted a role which has) been
granted the access right of EXISTENCE to the cbject.

initiate * - To place a program into execution:; in the CAIS, this means

a process node is created, required resources are allocated, and
execution is started.

initiated process * - The process whose program is placed into
execution.

initiating process * - The process placing a program into execution.
interface - [DACS] A shared boundary.

iterator * - A variable which facilitates iteration over nodes (a node
iterator) or attributes (an attribute iterator).

job * = A process node tree, spanned by primary relationships, which
develops under a root process node as other (dependent) processes are
initiated for the user.

- See relationship key. The key of a node is the relationship key
of the last element of the node's pathname.

list ~ [IEEE] An ordered set of items of data; in the CAIS, an entity
of type LIST TYPE whose value is a linearly ordered set of data items.

R H T . %4i%y

PROPOSED MIL~STD-CAIS
31 OCT 1984

list item * - A data item in a list.

latest key * - The final part of a key that is automatically assigned
lexicographically following all previous keys for the same relation and
initial relationship key character sequence.

named * - A list item which has a name associated with it or a list all
of whose items are named.

node * - Representation within the CAIS of an entity relevant to the

node handle * - A value that represents a reference (to a CAIS node)
that is internal to a process.

non-existing node - A node which has never been created.

cdbject - [TCSEC] A passive entity that contains or receives information.
In the CAIS, any node may be an cbject.

cpen node handle * ~ A node handle that has been assigned to a
particular node by means of an OPEN procedure.

parent * - The source node of a primary relationship.

path * - A sequence of relationships connecting one node to another.
Starting from a given node, a path is followed by traversing a sequence
of relationships until the desired node is reached.

path element * - A portion of a pathname representing the traversal of a
single relationship; a single relation name/relationship key pair.

pathname * - A name for a path consisting of the concatenation of the
names of the traversed relationships in the path in the same order in
which they are encountered.

permanent member * - A group member which is related to the group via a
primary PERMANENT MEMEER relationship.

position - A place in an output device in which a single, printable
ASCII character may be graphically displayed.

potential mamber * - A group member that may dynamically acquire

membership in the group; represented by a role that is the target of a

POTENTIAL MEMEER relationship emanmating from that group or fram any of

that group's descendants.

pragmatics - [- implementation pragmatics] Constraints imposed by an

t{il‘[:].amntatia'tormettataremtdefimdbythesyntaxcrsemnticsof
CAIS.

primary relationship * - The initial relationship established from an
existing node to a newly created node during its creation. The

- LRI

e e e e L%t Y % ¢ N et - -8 L S A -~ .. .~ e . - -
> - ...o . p(,.},’a’ '.\’ .. Ty “J"... e » q - .." L (:-.. ..:s'.-‘.-"p ;....‘.‘-.‘ . . _",\{ (_- .".-(y!‘. .

3-37

- e
.

S R ALY G T AN Y A O e W a0 T A M ook B M P 5 - i A e, B iy o T A0 -SRI S S~ o et Pt B A S B sttt |

(1

Can

1)

A
b,

o

- =
*
-

PN

(2L

Hale

e "y

PROPOSED MIL~STD-CAIS
31 OCT 1984

"
B

existence of a node is ocontrolled by the existence of the primary
relationship of which it is the target.

privilege specification - A list of access rights in accordance with the
syntax given in Table III.

process * - The execution of an Ada program, including all its tasks.

process node * ~ A node whose contents represent a CAIS process.

program - [LRM] A program is camposed of a number of compilation units,
one of which is a subprogram called the main program, which may invoke
subprograms declared in the cother campilation units of the program.

Ve

’.-;;':'«

program node * - A short-hand reference of the file node representing
the file which contains the executable image of a program.

-
[NEARN

qualified area ~ A contiguous group of positions that share a cammon set
of characteristics.

3
Lol

queue - [IEEE] A list that is accessed in a first-in, first-out manner.
relation * - A class of relationships sharing the same name.

w5

o relation name * - The string that identifies a relation.
. relationship * - In the node model, an edge of the directed graph, which
. amanates from a source node and terminates at a target node. A
relationship is an instance of a relation.
:, relationship key * - The string that distinguishes a relationship from
N other relationships having the same relation name and emanating from the
same node.
! role * - A user top-level node, program node, or group node that is the
y target of a secondary ROLE relationship.
b .
s root process node * =~ The initial node created when a user enters an
N APSE or when a new job is created via the CREATE JOB interface.
o secondary relationship * - An arbitrary connection which is established
R between two existing nodes.

security level - [TCSEC] The ocombination of .a hierarchical
o classification and a set of non-hierarchical categories that represents
hg the sensitivity of information.

..._.—,"-r'
-
)

source node * - The node fram which a relationship emanates.

structural node * - A node without contents. Structural nodes are used
strictly as holders of relationships and attributes.

e~

™~

»
‘l
-
Q

Rade ol CE a Aetdren gl ol BN MR 4 o b o

................................

R R T N SN B N AN AR AT .
A .‘L_L..;'A.':._f:f“f:x"x.':.1'.'1'::,':-':\1"_.-'_..-""-_'}-'1‘.'\.‘.'.'\) s

- a6 e L » . g
.. FE S DY F

)

.
[ROAR RERE W+

>4

" Sy AT

AL A

D)
I‘_-_l._l

Aot

PROPOSED MIL~STD-CAIS
31 OCT 1984

subject =~ [TCSEC] An active entity, generally in the form of a person,
process, or device that causes information to flow among objects or
changes the system state. In the CAIS, a suject is always a process
node

system node * - The root of the entire CAIS node structure.
target node * - Node at which a relationship terminates.

task - [LRM] An entity whose execution proceeds in parallel with other
parts of the program.

termination of a process * - Termination ([LRM] 9.4) of the subprogram
which is the main program ([LRM] 10.1) of the process.

tool - [IEEE - software tool] A computer program used to help develop,
test, anmalyze, o maintain another ocoamputer program or its
docurentation; for example, an autamated design tool, campiler, test
tool, or maintenance tool. ‘

top~-level node * - The root of the tree that includes all of the
structural, file and process nodes creatsd on the user's behalf; fram
it the user can access these and others. Each user has a top-level
node.

track * =~ Open node handles are said to track the nodes to which they
refer. This means that an cpen node handle is guarantecd always to

refer to the same node, regardless of any changes to relationships that
could cause pathnames to became invalid or to refer to different nodes.

traversal of a node * - Traversal of a relationship emanating from the
node.

traversal of a relationship * - Following a relationship fram its source
node to its target node in the process of accessing a node along a path.

unique primary name * - The pathname associated with the unique primary
path.

wmique primary path * - Every accessible node can be traced back to a
top—-level node by recursively following PARENT relationships; the path
obtained by inverting this chain is the unique primary path to the node.

umamad * -~ A list item which has no name associated with it or a list
all of whose items are umnamed.

uncbtainable * - A node is uncbtainable if the primary relationship of
which it is the target has been deleted.

user - A user is an individual, project, or other organizational entity.
Inﬂnms:l.tisu-ociatodwiﬂ\atq-lwelmdo

11

.~. l\

3-39

LR . T I e S R I TS O T T
Ly Y)

antng:

oo R § IR

S

X

(3

~
'.v

)

i

o TR i

Yy Tee
Ry

s

3

-?t. PR E:l

P

J '.\'¢"-.I*l"‘-.
'!'- DI,

R R S I S R T S AT TR R A N A D et ST R TR S-S5 SRR N B SIS A WA Ry o

PROPOSED MIL~STD-CAIS
31 ofr 1984

user name * - The key of a primary USER relationship.

12

.f’!‘ (.’-v N :}* ‘).".‘-..".‘w‘.'-q,--'.\ o NI *\.'.-..__,'.c\‘_;.":.‘_:,- .

oy e 5

Sing Fem o

B

~ Y A

S e
LSl D

-~ -

wef L3, “,’47
LY

e o
2 R 'R

LN

AL AN

g
L

P

IR
- | 4 P

ey
o a &N N,

N N oLl W

O NN

va

"¢
]

S

O PSRN GRS S a O

R T R T R e I T R W e T W TSI

PROPOSED MIL~STD-CAIS
31 OCT 1964

4. GENERAL REQUIREMENTS
4.1 Introduction

The CAIS provides interfaces for data storage and retrieval, data
transmission to and fram external devices, and activation of programs
and oontrol of their execution. In order to achieve uniformity in the
interfaces, a single model is used to consistently describe general data
storage, devices and executing programs. This provides a single model
for understanding the CAIS concepts; it provides a means for making
facilities available equally to data storage and program control; and
it provides a consistent way of expressing interrelations both within
and between data and executing programs. This unified model is referred
to as the node model.

Section 4.2 discusses how the interfaces are described in the remainder

of Section 4 and also in Section 5, Section 4.3 describes the node
model. Section 4.4 describes the mandatory and discretionary access

limits and constraints not defined by the interfaces. Section S
provides detailed descriptions of the interfaces.

Apperdix A provides descriptions of the predefined entities defined in
the CAIS. This appendix constitutes a mandatory part of this standard.

Appendix B will provide a set of the Ada package specifications of the
CQAIS interfaces which compiles correctly. This set of interfaces will
be extracted fram the final construction of the CAIS design and included
in the Military Standard 1 document.

4.2 Method of description

The specifications of the CAIS interfaces are divided into two parts:

a. the syntax as defined by a canonicml Ada package
specification

b. the semntics as defined by the descriptions both of
the general node model and of the particular packages
and procedures.

The Ada package specifications given in this document are termed
canonical because they are representative of the form of the allowable

13

o A ‘WL ® O o . P N N PSP P o G S T et
Y A T D G G O, 0 S G A A R .

o 7

o~ oyl

P

Cat

ey

):

R

(Y

Vo ,'_'3. Kelnls m

DML I PSP I L

&

PROPOSED MIL~STD-CAIS
31 OCT 1984

actual Ada package specifications in any particular CAIS implementation.
The packages which together provide an implementation of these
specifications must have indistinguishable syntax and semantics from
those stated herein. The actual Ada package specifications may differ
fron the canonical specifications in the following ways (which are
indistinguishable to programs calling these interfaces):

a. The package may have additional WITH or USE clauses.

'b.Paxmtermdeslistedhereuarrmybemarrcrt}me
listed as IN OUT may be CUT.

c. Types specified as limited private may be simply limited
types.

d. Packages may be instantiations of generic packages.

The following differences in CAIS package implementation fram the
specifications in this document are NOT permitted:

a. Additional or missing declarations, as these affect
name visibility.

b. Parameter mode IN being changed to IN OUT, as this
prevents passing of expressions.

c. Limited private types being changed to subtypes or
derived types, when this changes the samantics of
‘deriving’ fram the type.

4. Packages which are not available as specified library
units, because this changes the means of reference to

package components.

The interface semantics are described in most cases through narrative.
These narratives are divided into up to five paragraphs. The Purpose
paragraph describes the function of the interface. The Parameters
paragraph briefly describes each of the parameters, and the Exceptions
paragraph briefly describes the conditions under which each exception is
raised. Any relevant information that does not fall under one of these
three headings is included in a Notes paragraph. In cases where an
interface is overloaded and the additional versions are describable in
terms of the basic form of the interface and/or other CAIS interfaces,
these versions are described in a paragraph, called Additional
Interfaces, using Ada.

This document follows the typographical conventions of [LRM], where
these are not in conflict with those of a MIL-STD. In particular,

a. boldface type is used for Ada language reserved words,
[(Editor's Note: Typeset document only)

14

PROPOSED MIL~STD-CAIS
31 OCT 1984

b. UPPER CASE is used for Ada language identifiers which
are not reserved words,

c. in the text, syntactic category names are written in
normal typeface with any embedded underscores removed,

d. in the text, where reference is made to the actual
value of an Ada variable (for example, a procedure
paramster), the Ada name is used in normal typeface.
However, vhere reference is made to the ‘Ada dbject'
itself (see [LRM] 3.2 for this use of the word cbject),
then the Ada name is given in upper case, including
any abedded underscores. For example, fram [LRM]
14.2.1 paragraphs 17, 18 and 19 _

function MODE(FILE: in FILE TYPE) return FILE MODE;
Returns the current mode of the given file.
but
The exception STATUS ERROR is raised if the file
is not cpen.
e. at the place where a technical term is first introduced
and defined in the text, the term is given in an italic

typeface
(Bditor‘s Note: Typeset version only; this wversion
utilizes quotation marks in lieu of italics]

ways.
The CAIS model uses the concept of a "node" as the carrier of
infornmation about an entity. It uses the of a ‘"relationship"

the graph, and relationships, which form the edges of the
graph. This model is a conceptual model. It does not imply that an
implementation of the CAIS must use a directed graph to represent nodes
and their relationships.

15

S R T N L L N N e s N OR STAENEE

Ty >

Ll ™
) >/

S8

e

o
P

ROGUBIES B I A

P
I
'

» ~

AN

ne &:

N U'..O".l" :ﬂ"

Both nodes and relationships possess attributes describing properties of
the entities represented by nodes and of interrelations represented by
relationships.

4.3.1 Nodes

The CAIS identifies three different kinds of nodes: structural nodes,
file nodes and process nodes. A node may have contents, relationships
and attributes. The "contents” vary with the kind of node. If a node
is a "file node”, the contents are an Ada extermal file. The Ada

deleted.

as the contents of a process

The process node and its attributes and relationships are also
to bind to an execution the rescurces such as files and devices
required by the process. Taken together, the process node, its
attributes, relationships and contents are used in the CAIS to manage
the dynamics of the execution of a program.

Each time execution of a program is "initiated", a process node is

accordance with the rules in [LRM] 9, paragraph S.

Parallel tasks may be implemented on multicomputers,
miltiprocesscrs, or with interleaved execution on a
single physical processor. On the other hand, whenever
an implementation can detect that the same effect can be
guaranteed if parts of the actions of a given [Ada] task
are executed by different physical processors acting in
parallel, it may choose to execute them in this way; in
such a case several physical processors inmplement a
single logical processor.

16

L -f..d’ o’

SNOYRaNIN N

-4

PO TS T TP I PR Y
VO ARIALIGAS (.0

i '
PROPOSED MIL~STD-CAIS

o 31 OCT 1984

‘:

N when a task makes a CAIS call, execution of that task is blocked until 5
the CAIS call returns control to the task. Other tasks in the same

’ process may continue to execute in parallel, subject to the Ada tasking B
rules. If calls on a CAIS interface are enacted concurrently, the CAIS "

N doss not specify their order of execution.

N

:*‘ Processes are analogous to Ada tasks in that they execute logically in g

3 parallel, have mschanisms for interprocess synchronization, and can

¥ exchange data with other « However, processes and Ada tasks
are dissimilar in certain critical ways. Data, procedures or tasks in >

N oane process cannct be directly referenced fram another . Also, 9

: while tasks in a program are bound together prior to execution time (at

> canpile or link time), processes are not bound together except by

s cooperation using CAIS facilities at run time. g

*

» 4.3.3 Relationships and relations 2

ol k

Y The relationships of CAIS nodes form the edges of a directed graph;

O ﬂwymusedwmmmaalhimmgldimtmy and process

% structures (see Section 5.1.5 CAIS STRUCIURAL N Section 5.2.2)

CAIS PROCESS CONTROL) as well as arbitrary direct-d-gnli\ structures.

PP o e % ettt (e et e et e e et e e a e e e ara maae.. -
o B e e Wt R S R N R R O A T A N D R T 2y

Y, Relationships are unidirectional and are said to emanate fram a “source
N node” and to terminate at a “target node”. A relationship may also have
! attributes describing properties of the relationship. |
-‘ Because any node may have many relationships many different n
: classes of connections, the concept of a “relation” is introduced to ™
r, categorize the « These relations identify the nature of
3] relationships, and relationships are instances of relations. Certain N
-Ij basic relations are predefined by the CAIS. Their semantics are X
> explained in the following sections. Additional relations
. are introduced in Section 5 and are listed in Appendix A. Relations may
also be defined by a user. The CAIS associates only the relation name
- with user-defined relations; no other semantics are supported. N
>
o Each relationship is identified by a relation name and a relationship .
% key. The "relation name” identifies the relation, and the “relationship H
- key" distinguishes betwean multiple relatirmships each bearing the same L
relation name and emnating from a given node. In this document, a
- relation name is often referred to simply as relation and a
- relationship key is often referred to simply as a key. G
2,
» Nodes in the environment are attainable by navigating along the .
.. relationships. Operations are provided to move fram cne node (along one N
M of its relationships) to a conmected node (see Section 4.3.4). o
3 3
-,. 8
._. bl
. or
o 17 i
¥
1Al -
345
. [
e
5

AR geaa- G- s i ok Gl et o s aEt &R sk b 2t mo]

4.3.3.1 Kinds of relationships

There are two kinds of relationships: primary and secondary. When a
mdeiscreated.animua.lrelatimthxseetablishedfrunm other
node. This initial relationship is marked as the “primary relationship"
i source node of this initial relationship is

4.3.3.2 Basic predefined relations

The (AIS predefines certain relations. Relationships belonging to a
predefined relaticn cannot be created, modified, or deleted by means of
the CAIS interfaces, except where explicitly noted. The semantics of
the predefined relations which are basic to the node model, as well as
related oconcepts of the CAIS, are explained in this Section and Section
4.4.

The CAIS identifies the following basic predefined relations: PARENT,
USER, DEVICE, JOB, CURRENT JOB, CURRENT USER, CURRENT NCDE.

The (CAIS node model incorporates the notion of a user. Each user has
ane "top-level node" (similar to a file-system directory). This
top-level node is an entry point to the CAIS directed node graph and
fram it the user can access other structural, file and process nodes.

. The CAIS node model incorporates the notion of a "system” node which

- acts as the root of the entire CAIS node structure. Each top~level node
~, is reachable from the system node along a primary relationship of the
~ predefined relation USER emanating fram the system node. The key of
W' this relationship is the “user name". Each user name has a top-level

node associated with it. The system node is not manipulable via the
L CAIS interfaces. It may only be manipulated by interfaces outside the

CAIS, e.g., to add new USER relationships emanating from the system

.

b
r.
te
[
”.
»,
N,
g
[y
‘o
D_,
:.-
AN
p C
:
:.
\Q
“‘
e
»
:
A

[X0

-\,-\;l _'~ -_--'\-~-- T AT N gt et e et h e e At e e
&’A&;ﬂ\ N ACAS A, -33. .{ Mﬂ.’ﬁ.ﬂh‘ ‘\u—i -Eu&" eats S Lﬁ‘x{:‘x{ \':'.1:\‘\'\.{-.‘7-\"-':'.'-_R'L"’:;'C;‘.‘ E AR . Lo -".'f.'t"t'fl

o~

The CAIS node model incorporates the notion of devices. Each device is
by a file node. This file node is reachable fram the system

node along a primary relationship of the predefined relation DEVICE
the system node. The key of this relationship is the
*device name”. The CAIS does not define interfaces for creating nodes
such interfaces are to be provided ocutside the

When a user enters the APSE, a “root process” node is created which
or -other user-canmmication

process
node tree is referred to as a “job". The predefined JOB relation is
top~level node. A primary JOB relationship emanates fram each user's

always points to a node which represents the process's current focus or
cntext for its activities. The process node can thus use the
CURRENT NODE for a base node when specifying paths (see Section 4.3.4).
All three of these relations (CURRENT JOB, CURRENT USER,
CURRENT NODE) provide a convenient means for identifying (see Section
4.3.4) other CAIS nodes. The CAIS requires that the root process node
created when the user enters the APSE has a CURRENT NODE relationship

pointing to the top-level node for the user.

R

X IR

ED N B FE

A

hA

8 Al

ey

11

e

EAn |

S
ol

V3G

. .
.

LA
Al

I
sEF
I

i
i
A
il
K

4.3.4 Paths and pathnames

Every accessible node may be reached by following a sequence of
relationships; this sequence is called the “path" to the node. A path
starts at a known (not necessarily top-level) node and follows a
sequence of relationshipe to a desired node. The starting node is
called the “"base" node. Every accessible node can be traced back to a
top~-level node by following PARENT relationships; the path cbtained by
inverting this chain is the "unique primary path” to the node.

n,
L.

r

g
§
!
R
:
%
;
:
!
%

node, a path is followed by traversing a sequence of relationships until
the desired node is reached. The "pathname” for this path is made up of
the concatenation of the names of the traversed relationships in the

.]
ot

;
]
:
g
§
'
?
;%

the unique primary path is called the primary name* of the node.
P The base node of a path may be identified explicitly as an additional
E argument, the BASE, to many of the CAIS operations, signaling the
starting point for interpretation of a pathname. Otherwise, the current
- process node is used as the point for interpretation of the
' pathname. The unique primary name of a node is syntactically identical

A k]
My

e
8
]
8
[]
g
g
[+]
%
R
[+]

base/key/relation name. The phrase "toidentify” means to provide an
identification for a node. A node identification is oconsidered
P "illegal" if either the pathname or the relationship key or relation

name are syntactically illegal with respect to the syntax defined in
Table I below. An illegal identification is treated as an
identification for a non—existing node.

A pathname implies “traversalofancde" if a relationship emanating from

Many CAIS operations allow the amission of the relation name when
N referring to a relationship, defaulting it to 'DOT'. Relationship keys
My of DOT relationships may not be the empty string. Instances of the DOT
relation are fully manipulable by the user within access = right

o constraints. DOT relationships are not restricted to be primary
E relationships and are not associated with any other CAIS-specific
semantics.

~ PR i v 4

N A R R R R R N Y RN N Y Ko e D o S X : - 23

PROPOSED MIL~STD-CAIS
31 OCT 1984

The syntax of a pathname is a sequence of path elements, each “path
element” representing the traversal of a single relationship. A path
element is an apostrophe (pronounced ‘tick’) followed by a relation name
and a parenthesized relationship key. If the relationship key is
empty string, the parentheses may be anitted. Thus, ‘PARENT
‘PARENT() refers to the same node. If the relation is DOT, then
path element may be represented simply by a dot ('.‘) followed by
key for the DOT relation. Thus, ‘'DOT(CONTROLLER) is the same
+CQONTROLLER .

A pathname may begin sinplywitharelatimhipkq, prefixed by
either an apostrophe or '.' . This is taken to mean interpretation
following a relationship of the CURRENT NODE with the relation name DOT
amd with the given key. Thus AIRFORT is the same as
*CURRENT NODE.AIRFORT .

A pathname may also consist of just a single '.' . This is interpreted
as referring to the current process node.

Relation names and relationship keys follow the syntax of Ada
identifiers. Upper and lower case are treated as equivalent within such
identifiers. For example, all of the following are legal node
pathnames, and they would all refer to the same node if the CURRENT NODE
were 'USER(JONES).TRACKER and the CURRENT USER were JONES :

a. Landing System'With unit(Radar)
b. ‘'User(Jones).TRACKER.Landing system'with UNIT(RADAR)
C. 'CURRENT USER.TRACKER.LANDING SYSTEM'WITH unit(radar)

By convention, a relationship key ending in ' ' is taken to represent
the LATEST KEY (lexicographically last). When creating a node or

, us@ of ‘' ' to end the final key of a pathname will cause a
key to be autamatically assigned, lexicographically following all
previous keys for the same relation and initial relationship key
character

sequence.

the
and
the
the

as

21

-

OIS LN R I I I T . L S0 IO T TUR I S P S SO N I P - s - o .«
\‘\.iﬂ.. '&- '. -.;:~ ’-)- Do _"-f.‘}’ -f'n..ﬂat..'-:. A ."«.."-" A '\‘.‘- .! d.-‘*‘\“ .._. 3 r ‘\. vt '.-"v.

TABLE I. Pathname ENF

path_name::= {path element} |
relationship key{path element} |

th_element;::= ‘relation name [(relationship key)] |
o .relationship key

relation name::=identifier
relationship key::=identifier | identifier #

Notation:

1. Words - syntactic categories

2. [] - optional items

3. {} - an item repeated zero or more times
4 | - separates alternatives

4-3.5 Atmes -

Both nodes and relationships may have attributes which provide
information about the node or relationship. Attributes are identified
by an attribute name. Each attribute (see Section 5.1.3
CAIS ATTRIBUTES) has a list of the values assigned to it, represented
usingthedususrurmn‘s(seeSectim54l)typacauedusrm

Relation names and attribute names both have the same form (that is, the
syntax of an Ada identifier). Relation names and node attribute names
for a given node must be different fram each other.

The CAIS predefines certain attributes which are discussed in Section 5
and listed in Appendix A. Predefined attributes cannot be created,
modified or deleted by the user, except where explicitly noted.

e e e e el e .
A B LA - O . - N P T - \'* . -
IRV RSB LK S WA TR K CRK GO L %y O WO R R L R T G C G 2N R T, T

31 OCT 1984

4.4 Discretionary and mandatory access control

The CAIS specifies mechanisms for discretionary and mandatory access
control. In the CAIS, the following operations constitute "access to a
node”: reading or writing of the contents of the node, reading or
writing of attributes of the node, reading or writing of relationshipe
emanating from a node or of their attributes, querying the kind of a
node, and traversing a node as impliel by a pathname. The phrase
‘reading relationships' is a convenient short-hand for either traversing
relationships or reading their attributes. To access a node, then,
means to perform any of the above access cperations. The phrase 'to
obtain access' to a node means being permitted to perform certain
cperations on the node within access right constraints.

In the CAIS, the followin; operations do not constitute access to a
node: closing node handles to a node, opening a node with intent
EXISTENCE (see Table V), reading or writing of relationships of which a
node is the target or of their attributes, and querying the status of
node handles to a node.

In the CAIS “access control” refers to all the aspects of controlling
access to information. It consists of:

1. "access rights": descriptions of the types of operations which
can be performed (See Section 4.4.1.2).

2. "access control rules": the rules describing the correlations
between access rights and intents.,

3. "access checking": the operation of checking access rights
with intents according to the access control
rules and either permitting or denying the
intended operation.

All of the information required to perform access checking is
collectively referred to as “access control information.” The resulting
restrictions placed on certain kinds of operations by access control are
called "access rights constraints.”

A node is "inaccessible" if the current process does not have sufficient
discretionary access control rights to have knowledge of the node's
existence or if mandatory access controls prevent information flow from
the node to the current process. The property of inaccessibility is
always relative to the access rights of the currently executing process,
whilesztdnprcpertyofmobtainability is a property of the ncde being
accessed.

These concepts and the CAIS mechanisms which support them are discussed
in the following sections.

23

o at et et At et eVt e

T L I A T o R B wtm g te Nt T et

)

- o

g—'

AD-A160 355 KAPSE (KERNEL ADR PROGRAMMING SUPPORT ENVIRONMENT)
INTERFACE TEAM PUBLIC REPORT VOLUME 5CU) NAVAL OCEAN
SYSTEMS CENTER SAN DIEGO CA P A OBERNDORF AUG 83

UNCLASSIFIED NOSC/TD-552-Y0L-3 F/G 9/2

I P o P ; -
K e e 3 SN A DN S TN W P g W W W S S ek g Ak T el v pd

[
o
N
o

N
()

[l

eeREEEE
g
o

EEE

““ Ll
= 1.8 ,

E
()]
i~
>

\

MICROCOPY RESOLUTION TEST CHART
NATIONAL SUREAU OF STANOARDS - 1963~ A

Discretionary access control limits authorized access to nodes to named
users or groupe of users. The establishment of access rights to an
object is performed by an authorized user, typically the creator of the
cbject.

In the CAIS, an "cbject” is any node to be accessed and a "subject" is

any process node (acting on the behalf of a given user) performing an
operation requiring access to an object node.

Nonmally, a user may adopt one or more roles in order to affect same
purpose. In these roles, the user may be acting as himself, acting on
behalf of another person, acting as a member of same group, or acting

with sane rights granted him as a result of the function being
performed. The roles a user has adopted are one factor used in
ing access rights. In the CAIS, a subject (process node) may

determining .
act in the capacity of one or more roles. Each role identifies a
user, a program being executed, or a particular group of users,

:

In the CAIS, a "role" may be a user top-level node, a program node, or a
group node. A "program node” is the file node containing the executable
image of the program. Roles can be grouped by a “"group node” vwhich is a
structural node with emanating relationships identifying each of the
group’'s members; a group member may be either an individual user node,
a program node, or ancther group node. For exanple, a group node may
have as its members all nodes representing campatible versions of the
cawpiler or a collection of tools designed to operate on a given type of
data, or a group node may have as its manbers all nodes representing
individuals on a particular project or all subunits of a particular
organization.

Each group member is identified either by a primary relationship of the
predefined relation PERMANENT MEMBER or by a secondary relationship of
thepredefinedrelaummmm.mung&mthemmde

phrase "potential member” of a group refers to any role that is the
target of a POTENTIAL MEMBER relationship fram that group or fram any of
that group‘'s descendants.

The primary relation PERMANENT MEMBER may be used to create a hierarchy
of roles by defining members of a group that are themselves groups. A
user top-lmlmdemymtbeﬂntargetofaprmrym_mm
relationship emanating fram a group node, due to restriction that
mertcp—levelmdesmttaveﬂnsystan as their parent. The
phrase "descendant of a group" refers to any role reachable fram the
glvmg:mxpvzaprimmmm:ehtimsth-. The phrase
"ancestor of a role” refers to any group reachable fram the given role
via PARENT relationships. Hence, anly nodes that represent permanent

24

L ¢

o.-.n

T IENN

31 OCT 1984

members of a group have ancestors.

The CAIS discretionary access control model requires that, upon creation
of a root process node, secondary relationships of the predefined
relation FROLE eamnate fram the created root process node to an
implementation-defined set of roles; at least the secondary ROLE
relatimﬂmipwitl’xﬂnmrm key nmust be established fram the root

process node to the user top-level node. These ROLE relationships are
inherited by the process nodes initiated on behalf of the user (similar
to USER and DEVICE relationships). Roles can therefore be reached fram
a process node with the relation ROLE and a relationship key interpreted

to be the role name.

4.4.1.1 Adopting a role

When a process “adopts” apartiaxlarmlc,aoecaﬂuyrehtiauhipof
the predefined relati
the role. There
fram a process node. nnptmu'adopudmleofapmcss' refers to
the role , or
ADOPTED ROLE relationship fram the process node. Roles are adopted
e.i.tlur Timplicitly or explicitly. Wwhen a process is created, it

4.4.1.2 The access relationship «nd the privilege attribute

An access relationship is any secondary relationship of the predefined
relation ACCESS from an cbject to a role. Any cbject may have gzero or
more access relationships. Each access relationship has a predefined
privilege attribute, called GRANT, which specifies what access rights to

the cbject are granted to adopters of the role.

The privilege attribute value consists of a list of "privilege
specifications”. Each privilege specification consists of a necessary
privileges list, followed by a right-arrow (=>), followed by a resulting
privileges list. A list with cne elemant may be replaced by the element
alone. If the necessary privileges list is empty, the privilege
specification may be replaced by the resulting privilege list alone.
The for the INF privilege specifications is given in Table II.

25

R N

3-53

T T

[_'ICJ

.
L &

E{?

rtd 1

'y

yo e -
7%

R

Fa

LY
s

L

TABLE II. Privilege Specification BNF

privilege specifications:= ([necessary privileges =>]
resulting privileges)

necessary privileges::= privilege list
resulting privileges::= privilege list

privilege list 1= identifier |
(identifier { , identifier})

Notation:

1. wWords ~ syntactic categories

2. [] <~ optional items

3. { } - an item repeated zero or more times
4 | - spearates alternatives

The necessary and resulting privileges lists are lists of privilege
names. Privilege names imply the granting of certain access rights. A
privilege name has the syntax of an Ada identifier. Privilege names may
be user-defined, but certain privilege names have special significance
to CAIS operations. In particular, the CAIS recognizes the privilege
names given in Table IITI and the access rights for which they are
necessary or sufficient.

e

L

TABLE III. Privilege Namss and Access Rights

EXISTENCE Without this access right, the object is
inaccessible to the subject. Without additional
access rights, subject may neither read nor
write attributes, relationships or contents of
the cbject.

READ RELATTIONSHIPS subject may read attributes of relationships
emanating fran the object or use it for
traversal to another node; the access right
EXISTENCE is implicitly granted. Necessary to
cpen the object with intent READ RELATIONSHIPS.

PROPOSED MIL~STD-CAIS
31 OCr 1984

L Gl o

WRITE_RELATIONSHIPS

WRITE ATTRIBUTES

READ_CONTENTS

WRITE CONTENTS

subject may create or delete relationships
enanating fram the cbject or may create, delete,
or modify attributes of these relationships; the
access right EXISTENCE is implicitly granted.
Necessary to open the object with intent
WRITE RELATIONSHIPS.

subject may read attributes of the adbject;

.the access right EXISTENCE is implicitly granted

Necessary to open the cobject with intent
READ_ATTRIBUTES.

subject may create, write, or delete attributes
of the object; the access right EXISTENCE is
implicitly granted. Necessary to open the cbject
with intent WRITE ATTRIBUTES.

subject may read ocontents of the cbject; the
access right EXISTENCE is implicitly granted.
Necessary to open the cdbject with intent
READ_CONTENTS.

subject may write oontents of the cbject; the
access right EXISTENCE is implicitly granted.
Necessary to open the cbject with intent
WRITE OONTENTS.

READ CONTENTS, and EXISTENCE access rights.
Necessary to open the cbject with intent READ.
Sufficient to cpen the object with intent
READ RELATIONSHIPS, READ ATTRIBUTES, or
mcmmus

union of WRITE_RELATIONSHIPS, WRITE ATTRIBUTES,
WRITE CONTENTS, and EXISTENCE access rights.
Necessary to open the cbject with intent WRITE.
Sufficient to cpen the object with intent
WRITE_RELATIONSHIPS, WRITE ATTRIBUTES, or
mam'mrs

subject may create a process that takes the

cpen the object with intent EXBECUTE.

subject may modify access control information of
the <dbject; the access right EXISTENCE is
implicitly granted. Necessary to open the cbject
with intent CONTROL.

27

3-55

\

v"'

g e W o

= I8 BB

L

el

se)

[N O

WA

&

XA B %)

% 8 |

Lasd
-

ACAON,

8]

554

DAY

LN

)

[F%

b

$

A,

PO A A O e N S NN A AL TN I AR T Al e N R E R i N T TS

PROPOSED MIL~STD~CAIS
31 OCT 1984

4

>

The following are examples of privilege specifications:

(READ, WRITE, APPEND MAIL)

(COMPILE, CONTROL)

' ((EDIT, COMPILE)=>(READ, WRITE CONTENTS))
(READMAIL=> (READ, WRITE), SENDMAIL=>APPEND)

e

XA,

N Access relationships and privilege attributes are established for
objects using the interfaces provided in the package CAIS ACCESS QONTROL

a or may be established at node creation. When a node Is created, the
e initial access control information may be supplied by the ACCESS CONTROL
. If non=-muall, this the initial access

N control information to be established for the created node, using named
N Ada aggregate syntax. Each named choice given in the ACCESS CONTROL
’ parameter identifies a ROLE relationship key. Each selected expression
S identifies a privilege specification. For each of the component
: S}.j associations, an access relationship is created fram the created node to
S a role identified by the pathname built from the relation ROLE and the
. relationship key given by the choice. The privilege specification is
5:; the initial value of the GRANT attribute of the access relationship.
:(,; 4.4.1.3 Discretionary access checking

r\

‘-\

when access oontrol is enforced for a given operation
. discretionary access right required for each object i
cperation is compared to the proceas‘’s access rights as defined by
object access relationships. If the cbject has

to a role that is an adopted role of the sub
allows the access right being checked, then the operation is allowed.
Otherwise the operation is not allowed, and the operation is terminated

=
.

.
.
» S

: For an access relationship to grant an access right, the access right
r T must appear in a resulting privilege list in a GRANT attribute of the
- relationship, and the access rights in the associated required privilege
. e list must have been granted.

7 L":

) - 4.4.2 Mandatory access control

N = Mandatory access oontrol provides access controls "based directly on a
N camparison of the individual's clearance or authorization for the
- ; information and the classification or sensitivity designation of the

b information being sought." [TCSEC)

o A mandatory access control classification may be either a hierarchical
" t_j,' classification level or a non-hierarchical category. A hierarchical

)

classification level is chosen fran an ordered set of classification
levels and represents either the sensitivity of the object or the

b %A, 4,

AL trustworthiness of the subject. In hierarchical classification, the
- E reading of information flows dowrward towards less sensitive areas,
“»
: "N
2 28
Al
.
-~ ". 3-“

-
e
A]

Cd

LR Y R U Wy L T AT T AT T T T e Tt Tt et
O) ". .'.\‘-\"‘**\..“.I\‘l '.'\.‘:.':J:.‘ -~‘\~. '..\ - --.\.. '-._\ oy

Y L R SR T P T P
A A i A e A

]
' &

.
[}

s

e s B & A

X s a0 o H N

S WY

vhile the creating of information flows upward towards more trustworthy
individuals. A subject may cbtain read-access tO an object if the
hierarchical classification of the subject is greater than or equal to
that of the cbject. In turn, to cbtain write-access to the dbject, a
subject's hierarchical classification must be less than or equal to the
hierarchical classification of the abject.

Each subject and abject is assigned zero or more non-hierarchical
categories vhich represent cosxisting classifications. A msubject may
obtain read-access to an dcbject if the set of non-hierarchical
categories assigned to the subject contains each category assigned to
the cbject. Likewise, a subject may cbtain write—-access to an cbject if
each of the non~hierarchical categories assigned to the subject are
included in the set of categories assigned to the object.

A subject must satisfy both hierarchical and non-hierarchical access
rights constraints to obtain access to an cbject.

In the CAIS, subjects are CAIS processes, while an cbject may be any
CAIS node. Operations are CAIS cperations and are classified as read,
write, or read/write operations. Access checking is performed at the
time the gperation is requested by comparing the classification of the
subject with that of the object with respect to the type of operation.

4.4.2.1 Labeling of CAIS nodes

The labeling of nodes is provided by predefined node attributes. A
predefined attribute, called SUBJECT CLASSIFICATION, is assigned to each
process node and represents the node's classification as a subject. A
predefined attribute, called OBJECT CLASSIFICATION, is assigned to each
node and represents the node's classification as an cbject. These
attributes have limited functionality and cannot be read or written
directly through the CAIS interfaces. The value of the attribute is a
parenthesized list containing two items, the hierarchical classification
level and the non-hierarchical category list. The hierarchical
classification is a keyword mamber of the ordered set of hierarchical
classification keywoxrds. The non-hierarchical category list is a list
of zZero o more keyword members of the set of non-hierarchical
categories. For example, the following are possible classification
attribute values:

(TOP_SECRET, (MAIL USER, OPERATOR, STAFF))
(UNCLASSIFIED, ())
(SECRET, (STAFF))

The BNF for the value of a participant classification attribute is given
in Table 1V.

VA T T U S K i) Wl W D I ol Y o il Y Rl PPN et ol PV SO P SN Ol ST o ieC i i e PO el

‘:""‘

S Ao

Y W

n

P

e R |

v .
C4

| OOt

TABLE IV. Participant Classification Attribute Value BNF

object_classification ::= classification

subject classification ::= classification

classification ::= (hierarchical classification,
non_hierarchical categories)

hierarchical classification ::=

non_hierarchical categories ::= ([keyword (, keyword } 1)

keyword ::= identifier

Notation:

1. Words - syntactic categories

2. [] - optional items

3. {] - an item repeated zero or more times
4 | - spearates alternatives

The hierarchical classification level set and the non-hierarchical
category set are implementation-defined.

4.4.2.2 Labeling of subject nodes

When a root process is created, it is assigned subject and object
classification labels. The method by which these initial labels are
assigned is not specified; however, the labels "shall accurately
represent security levels of the specific [users] with which they are
associated.” [TCSEC] When any non-root (dependent) process node is
created, the creator may specify the classification attributes
associated with the node. If mno classification is specified, the
classification is inherited from the creator. The assigned
classification must adhere to the requiremsnts for mandatory access
control over write operations.

I

>

i b B

.

. 8.0

K e s VAR Yo W e T T I T e PR o el PNy ¥ e Wl 9 Rt P iy Bl 9 g i Py Vg) A e Cu Ta P N Ay "8 -

e

PROPOSED MIL~STD-CAILS
31 OCT 1984

4.4.2.3 Labeling of dbject nodes

when a non-process cbject is created, it is assigned an object
classification label. The classification label may be specified in the
create operation, or it may be inherited fram the parent. The assigned
classification must adhere to the requirements for mandatory access
control over write operations.

4.4.2.4 Llabeling of nodes for devices

Certain file nodes representing devices may have a range of
classification levels. The classification label of node of
process cpening cne of these nodes is assigned to the file node while it
is open.

The range of classification levels is specified by two predefined
node attributes. The attribute HIGHEST CLASSIFICATION defines
highest allowable ocbject classification label that may be assigned
the file node. The attribute LOWEST CILASSIFICATION defines the lowest

satisfied, the operation terminates by raising the exception
SECURITY_VIOLATION, except where the indication of failure oonstitutes
violation of mandatory access control rules for ‘read' operations, in
which case NAME ERROR may be raised.

4.5 Input and output

Ada input/output in [LRM] Chapter 14 involves the transfer of data to
and from Ada extermal files. CAIS input/output uses the same
input/output model and also involves the transfer of data to and fram
CAIS file nodes. These file nodes may represent disk or other
starage files, magnetic tape drives, terminals, or queues.

E

3l

""" ._:.;-' ‘i\:-'\'-" ‘e '.‘;.'-:f;:}:'.‘)\'.;.i.i.;:g».-.-.'. ¥y ' «* .'

3-59

ke

T B

4

T als

;:h :l

oed

v
e

T

LA

K.

;'I.. -;;)

I L

31

Lo

- - v v
E“’- ! l Lol

> e .
......

.
»

n

ro—-
..'-

Catete

™y

31 OCT 1984

4.5.1 CAIS file nodes

CAIS file nodes represent information about and contain Ada external
files. The underlying model for the contents of such a node is that of
a file of data items, accessible either sequentially or directly by same
index. The packages specified in this section provide facilities that
operate on CAIS external files.

There are four types of CAIS supported Ada external files: secondary
storage, queue, terminal, and magnetic tape.

4.6 Pragmatics

4.6.1 Pragmatics for CAIS node model

Several private types are defined as part of the CAIS Node Model. The
actual implementation of these types may wvary from one CAIS
implementation to the next. Nevertheless, it is important to establish
certain minimins for each type to enhance portability.

a. NAME STRING At least 255 characters must be supported
in a CAIS pathname.

b. RELATIONSHIP KEY At least 20 leading characters must be
significant in a (relationship) key.

¢. ATTRIB NAME At least 20 leading characters must be
RELATION NAME significant in attribute and relation names.
d. Tree-height At least 170 levels of hierarchy must be

supported for the primary relationships.
e. Record size muber At least 32767 bits per record must be
supported.

f. Open node count Each process must be able to have at least
15 nodes open simultaneously.

- l"_ .

§)

oYYy

.

i Ny e 8 s o e 1t ol . ~ oty
& X P~ g v P4 Rt Y gl Bl pAR gt O ST e oot pos i e g i U 0 0 i) il S (e Rt B U DA B wn b ok o i o

PROPOSED MIL~STD-CAIS
31 OCT 1984

4.6.2 Pragmatics for CAIS SBQUENTIAL IO

A oconforming iuplmxtatimmtsupportgem:icimtantiatimofmis
padagewxﬂtany(xux—limited)mtraundmtypem maximm size
in bits (as defined by the attribute ELEMENT TYPE'SIZE) is at least
32767. A conforming implementation must also support instantiation with
unconstrained record types which have default constraints and a maximum
size in bits of at least 32767, and may (but need not) use variable
length elements to conserve space in the external file.

4.6.3 Pragmatics for CAIS DIRECT IO

Each element of a direct-access file is selected by an integer index of
type COUNT. A conforming implementation must at least support a range
of indices fram one to 32767 (215-1).

A oconforming mplmummstsmtmcmumofthls
package with any (non-limited) constrained Ada type whose maximm size
in bits (as defined by the attribute ELEMENT TYPE'SIZE) is at least
32767. A conforming implementation mist also support instatiation with
unconstrained record types which have default constraints and a maximm
size in bits of at least 32767, and may (but need not) use variable
length elements to conserve space in the external fiie.

4.6.4 Pragmatics for CAIS TEXT IO
A oonforming implementation must support files with at least 32767

records/lines in total and at least 32767 lines per page. A conforming
implementation must support at least 255 colums per line.

33

E PROPOSED MIL-STD-CAIS
31 OCT 1984
é:_;'. 5. DETAILED REQUIREMENTS
The following detailed requirements shall be fulfilled in a manner
8 consistent with the model descriptions given in Section 4 of this
standard.

e
YD)

S.1 General ncde management

This section describes the CAIS interfaces for the manipulation of nodes
in general, of relationships and of attributes. These interfaces are
defined in three packages: CAIS NODE DEFINTIONS defines types,
subtypes, exceptions, and oconstants used throughout the CAIS;
CAIS_NODE MANAGEMENT defines interfaces for the manipulation of nodes in
general, of relationships and of attributes: and CAIS_STRUCTURAL_NODES
defines interfaces for the creation of structural nodes.

-
Y |

£
)
tfe s

r

ve Specialized interfaces for the manipulation of process and file nodes
and of their relationships and attributes are defined in Sections 5.2.
and 5.3., respectively.

To simplify manipulation by Ada programs, an Ada type NODE TYPE is
r. defined for values that represent an internal handle for a node
{.:- (referred to as a "node handle”). (bjects of this type can be
: associated with a node by means of an OPEN procedure, causing an
.. "open node handle" to be assigned to the object. Most procedures expect
' either a parameter of type NODE TYPE, or a pathname, or a cambination of
a base node (specified by a parameter BASE of type NODE TYPE) and a path
element relative to it.

e An open node handle is guaranteed always to refer to the same node,
regardless of any changes to relationships that could cause pathnames to
becane invalid or to refer to different nodes. This behavior is

F referred to as the "tracking" of nodes by open node handles.
Access to anode by means of a pathname can only be achieved if the

b current process has the respective access rights to the node as well as

. to any node traversed on the path to the node.

- The key of a node is the relationship key of the last element of its

’:‘»_‘._ pathname.

¢

I

-l

-t .

o LA R P S U P ML L S PO SN Nt
.te
LNy) all o

- .. . -
AT P ORI DR OO

SR e W L e e L e rr..-r'v'*

PROPOSED MIL~STD-CAILS
31 OCT 1984

5.1.1 Package CAIS NODE DEFINITIONS -

This package defines the Ada type NODE TYPE. It also defines certain
enumeration and string types and
exceptions useful for node manipulations.

type NCDE TYPE is limited private;
type NODE KIND is (FILE, STRUCTURAL, PROCESS):

type INTENT SPECIFICATION is
(EXISTENCE, READ, WRITE, READ) ATTRIBUTES, WRITE ATTRIBUTES,
APPEND ATTRIBUTES, READ_RELATIQ!S{IPS WRITE_RELATIM-IIPS,
APPEN)_RELATI(NSHIPS, READ CONTENT, WRITE_CONTENT,
APPEND CONTENT, CONTROL, EXBECUTE, EXCLUSIVE READ,
EXCLUSIVE WRITE, EXCLUSIVE RFAD ATTRIBUTES,
EXCLUSIVE WRITE ATTRIBUTES, EXCLUSIVE APPEND ATTRIBUTES,
EXCLUSIVE READ RELATICNS{IPS. EXCLDSIVE WRITE . RELATTONSHIPS,
EXCIDSIVE APPEND)_RELATIONSHIPS, M-USIVE READ) CONTENT,
EXCLUSIVE WRITE C!NI‘ENI‘, EXCLUSIVE APPEND CINI‘ENT.
EXCLUSIVE_CONTROL);

type INTENTION is array(POSITIVE range <>) of INTENT SPECIFICATION:

subtype NAME STRING is STRING:
subtype RELATIONSHIP KEY is STRING;
subtype RELATION NAME is STRING:
subt:ypemmsmnn is STRING:

NODE TYPE describes the type for node handles. NODE KIND is the
enumeration of the kinds of nodes. INTENT SPECIFICATION describes the
usageofmdehndlesarﬂufm‘therexplunedeectnmSlZl.
INTENTION is the type of parameter INTENT of CAIS subprograms OPEN and
CHANGE INTENT, as further explained in Section 5.1.2.1.

NAME STRING, RELATIONSHIP KEY, RELATION NAME, and FORM STRING are
subtypes for pathnames, relationship keys, and relation names, as well
as for form strings used for the notation of aggregates of attribute
values (c.f. [LRM] 14). The value of such strings is subject to
certain syntactic restrictions whose violation causes exceptions to be

= "'CURRENT USER";
= " *CURRENT | ' NODE";
= ” ll

. > | "#N

DEFAULT RELATION: constant RELATION NAME := "DOT";

constant NAME STRING
constant NAME STRING
constant NAME STRING

i

TOP_LEVEL, CURRENT NCDE, and CURRENT PROCESS are standard pathnames for
themrrerrtuserstop—levelmde. axrent node, and current process,
respectively. LATEST KEY and DEFAULT ' RELATION are standard names for
the latest key and the default relation name, respectively.

Fet

d H

Y]

I

.

r
e T

» .
.

LIS W

- -

" s
[

<

5 XA
XA
A

ey

]

1 "f.{ }

Y

R
PN

aar

s
LA

BB IR E LA AN W e A WY I e Byt §rps 4 e -3 a4 -3 y v 58 W it DB AN »,

31 oCT 1984
STATUS_ERROR : exception;
NAME ERROR : exception;
USE_ERFOR s exception:
LAYOUT ERROR : exception;
LOCK_ERROR : exception;
ACCESS_VIOLATION : exception;
INTENT VIOLATION : exception;

STATUS_ ERROR is raised whenever the open status of a node handle does
not conform to expectations.

NAME ERROR is raised whenever an attempt is made to access a node via a
patmamecrmdeharﬂlemlethenodedoesmtenst,u unobtainable,
discretionary access control constraints for knowledge of existence of a
node are violated, or mandatory access controls for ‘read' operations
are violated. This exception takes precedence over ACCESS VIOLATION and
SECURITY VIOLATION exceptions.

USE_ERROR is raised whenever a restriction on the use of an interface is
violated.

LAYOUT ERROR is raised whenever an error is encountered with regard to
layouts.

LOCK ERROR is raised whenever an attempt is made to modify or lock a
locked node.

ACCESS VILATION is raised whenever an operation is attempted which
viclates access right constraints other than knowledge of existence of
the node.

INTENT VIOQLATION is raised whenever an operation is attempted on an open
node handle which is in violation of the intent specified when the node
handle was opened. SBCURITY VICLATION is raised whenever an operation
is attempted which violates nandatory access controls for ‘write’

operations.

5.1.2 Package CAIS NODE MANAGEMENT -

This package defines the general primitives for manipulating, copying,
renaming, and deleting nodes and their relationships.

The operations defined in this package are applicable to all nodes,
relationships and attributes except where explicitly stated otherwise.
These operations do not include the creation of nodes. The creation of
structural nodes is performed by the CREATE NODE procedures of package
CAIS STRUCTURAL NODES (Section 5.1.5), the creation of nodes for
processes is performed by INVOKE PROCESS and SPAWN PROCESS of

CAIS PROCESS CONTROL (Section 5.2.2), and the creation of nodes for
files is performed by the CREATE procedures of the input/output packages

36

g o Ltk o g —y
[AA0S I SN S N NN R R LN e S i g e o ae e

PROPOSED MIL~STD-CAIS
31 OCT 1984

r'r!

N (Section 5.3).

* There are three CAIS interfaces for manipulating node handles; OPEN
] opens a node handle, CIOSE closes the node handle, and CHANGE INTENT '
¥ alters the specification of the intention of node handle usage. These =
interfaces perform access synchronization in accordance with an intent
specified by the parameter INTENT. :

These interfaces are central to the general node administration, since
most other interfaces take node handles as parameters. While such other
interfaces may also be provided in overloaded versions, taking pathnames Iy
as node identification, these overloaded versions are to be understood
as including implicit OPEN calls with appropriate intent specification
and a defaulted TIME LIMIT parameter. .

One or nore of the intentions defined in Table V can be expressed by the
INTENT parameters.

LW Vg G

22

.
-t

I
7

o

T

Table V Intents

= EXISTENCE: A
» The established access right for subsequent operations is to \
. query properties of the node handle and existence of the node
node only. Lodks on the node have no delaying effect. .

READ, EXCLUSIVE READ:

The OPEN operation is delayed if the node, its oontents,
attributes or relationships are locked against read operatioms.
The established access right for subsequent operations is to read
e node contents, attributes and relationships. For EXCLUSIVE_READ,
the node is locked acainst all opens with write intent. In :
5 addition, the OPEN operation is delayed if there are open node o]
~, handles to the node with write intent. -

WRITE, EXCLUSIVE WRITE:
The OPEN operation is delayed if the node, its oontents,
attributes or relationships are locked against write operations.

write, create or append to node ocontents, attributes and
= relationships. For EXCLUSIVE WRITE, the node is locked against
all opens with read, write or append intent. In addition, the
OPEN operation is delayed if there are cpen node handles to the
node with read, write or append intent.

READ_CONTENTS, EXCLUSIVE READ CONTENTS:
The OPEN operation is delayed if the node or its oontents are
locked against read operations. The established access right for
subsequent oOperations is to read the node oontents. For
EXCLUSIVE _READ CONTENTS, the node contents are locked against all
cpens with write intent. In addition, the OPEN operation is
if there are cpen node handles to the node with intent to
write its contents. ¢

vt

[o] .,

BAANNNNS

37

T
PAFRRRERE NS

.
~

3-65

ad
S »
B
-'\

- :.._\ "-._:.",‘.' Y, *\)‘.') Y

+
g
-
Oy
v

e
At
.
.

P
fa

PR
o

13

—r— ™
f .t‘ b, X

. P R i, Pl i ki N #T1 T SUNL SN -Whd Pk At LN Rt L pigY a8 meh a4 2L - P R R inp et g) P v

PROPOSED MIL~STD~CAIS
31 OCT 1984

WRITE_CONTENTS, EXCLUSIVE WRITE CONTENTS:
The OPEN operation is delayed if the node or its contents are
locked against write operations. The established access right
for subsequent operations is to write or append to the node
contents. For EXCLUSIVE WRITE CONTENTS, the node contents are
locked against all opens with read, write or append intent. In
addition, the OPEN operation is delayed if there are open node
handles to the node with intent to read, write or append its
ocontents.

Am_m.mm_am_@ms:

The OPEN operation is delayed if the node or its contents are
locked against append operations. The established access right
for subsequent operations is to append to the node contents. For
EXCLUSIVE APPEND CONTENTS, the node contents are locked against
all opens with append or write intent. In addition, the OPEN
cperation is delayed if there are open node handles to the node
with intent to append or write its contents.

READ ATTRIBUTES, EXCLUSIVE READ ATTRIBUTES:

The OPEN operation is delayed if the node or its attributes are
locked against read operations. The established access right for
subsequent operations is to read node attributes. For
EXCLUSIVE READ ATTRIBUTES, the node is locked against all opens
with intent to write attributes. In addition, the OPEN operation
is delayed if there are cpen node handles to the node with intent
to write attributes.

WRITE_ATTRIBUTES, EXCLUSIVE WRITE ATTRIBUTES:

The OPEN operation is delayed if the node or its attributes are
locked against write cperations. The established access right for
subsequent operations is to modify and create node attributes.
For EXCLUSIVE WRITE ATTRIBUTES, the node is locked against all
opens with intent to read, write or append attributes. In
addition, the OPEN operation is delayed if there are open node
handles to the node with intent to read, write or append
attributes.

APPEND_ATTRIBUTES, EXCLUSIVE APPEND ATTRIBUTES:

The OPEN coperation is delayed if the node or its attributes are
locked against append operations. The established access right
for subsequent operations is to create node attributes. For
EXCLUSIVE APPEND ATTRIBUTES, the node is locked against all cpens
with intent to write or append attributes. In addition, the OPEN
ocperation is delayed if there are open node handles to the node
with intent to write or append attributes.

READ RELATIONSHIPS, EXCLUSIVE READ RELATIONSHIPS:
The OPEN operation is delayed if the node or its relationships
are locked against read operations. The established access right
for subsequent operations is to read node relationships. For
EXCLUSIVE READ RELATIONSHIPS, the node is locked against all
opens with intent to write relationships. In addition, the OPEN

38
e S '._o"~\' ';.-.;‘p‘:'.\' '-; _..: '-\' -.-'_...':n.:‘-\"-.:'-\"--:'..'.-;..\‘ s."-\' ..: ‘-{ ‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ Y)\‘ .\"\\'.n '.-‘F i‘; ?‘. ‘F '..;.. ". ~
O e R KA IADY TR RS) MRS

VSl o]

e 4 ¢ 1
.‘l""‘l . -

i 2 A AN

a0
.
.

PROPOSED MIL~STD-CAIS
31 OCT 1984

cperation is delayed if there are open node handles to the node
with intent to write relationships.

WRITE_RELATIONSHIPS, EXCLUSIVE WRITE RELATIONSHIPS:

The OPEN operation is delayed if the node or its relationships
are locked against write operations. The established access
right for subsequent operations is to write or create node
relationships. For EXCLUSIVE WRITE RELATIONSHIPS, the node is
locked acainst all opens with intent to read, write or append
relationships. In addition, the OPEN cperation is delayed if
there are open node handles to the node with intent to read,

write, or append relationships.

APPEND RELATIONSHIPS, EXCLUSIVE APPEND RELATIONSHIPS:
The OPEN operation is delayed if the node or its relationships
are locked against append operations. The established access
right for subsequent operations is to create node relationships.
For EXCLUSIVE APPEND RELATIONSHIPS, the node is locked against
all cpens with intent to write or append relationships. In
addition, the OPEN operation is delayed if there are open node
handles to the node with intent to write or append relationships.

CINﬂCL.EﬂZHEnECINHCLx

The OPEN ocperation is delayed if the node or its relationships
are locked against write or access-control operations. The
established access right for subsequent operations is to read and
alter access control information. For EXCLUSIVE CONTROL, the node
is locked acainst all cpens to write node contents, attributes or
relationships, or to modify access oontrol information. In
addition, the OPEN operation is delayed if there are open node
handles to the node with intent to write node ocontents,

39

......................

U AR T C A I ST SRR .
YIS ‘ C " o Y YOG ATAT R AR e A AT
- - g S "t e :

'''''''

L) .

P ®r-
ARl

00

3

Table VI. [presents an overview of interfaces to query nodes and manipulate

primary and secondary relationships.

Table VI. Query/Manipulation Interfaces

o

s

-

Pathname queries

Node queries

Node duplication
interfaces

Alteration of primary
relationships

Deletion of primary
relationships

The following interfaces allow certain queries
about pathnames. None of these interfaces
performs accesses to nodes; they perform
pathname manipulations at the syntactic level
only.

These interfaces can also be used to establish
the syntactic legality of a pathname.

function BASE_PATH
function LAST RELATION
function LAST KEY

The following interfaces allow certain queries
about nodes.

function OBTAINABLE
function IS _SAME
procedure GET PARENT

The following two interfaces can be used to
duplicate single nodes or trees of nodes

spanned by primary relationships.

procedure QOPY_NODE
procedure COPY_TREE

The following interface can be used to alter
the primary relationship of a node, thereby
changing its unique primary name.

procedure RENAME
The following two interfaces allow the
deletion of the primary relationship of a

single node or of the primary relationships
of a node amd all the nodes that are

Reamoval of the primary relationship to a node
makes the node unobtainable. The semantics of
the AIS allow, but do not force, individual
implementations of the CAIS to delete the
physical representation of uncbtainable nodes.

L g Y - g — " o
e Va BT R T W TN TR (LA SN ANICSAS P A6 W IR VL P A i i wiie oSO b il TN BV wmneh LA At w e v A e XD R I +.a% e ¥l

31 OCT 1984
o3
procedure DELETE NODE %
procedure DELETE TREE
[
: Creation and deletion The following two interfaces allow the £
) of secondary creation and deletion of user-defined he
‘ relationships secondary relationships. -
\ 5":
\ procedure LINK B
procedure UNLINK
Node iterators The following definitions and interfaces allow 5
allow the jteration over nodes reachable fram -
a given node via its amnating relationships —
of the specified relation name and "
relationship key patterns. D
procedure ITERATE oy
function MORE IR
procedure GET NEXT -
Manipulation of the The following two interfaces allow changes of 3
CURRENT _NCDE the CURRENT NOCE relationship emanating from
relationship the current process node and cbtaining an open
ncde handle an the that is the target of the 2
CURRENT NODE relationship. o
procedure SET_CURRENT NODE d
procedure GET CURRENT NODE v
5.1.2.1 Opening a node handle - "
procedure OPEN (NODE: in cut NODE TYPE: -
NAME:; in NAME_STRING; .
INTENT': in INTENTION := (READ): -2
TIME LIMIT: in DURATION := DURATION'FIRST); .
procedure OPEN (NODE: in out NODE_TYPE; -
BASE: in NODE_TYPE;
KEY: in ONSHIP KEY; bd
RELATION: in RELATION NAME := o
DEFAULT RELATION; ‘
INTENT': in INTENTION := (READ); N
TIME LIMIT: in DURATION := DURATION'FIRST): -
Purposes -
These procedures return an open node handle in NODE to the node
identified by the pathname NAME or BASE/KEY/RELATION, respectively. oo
The INTENT paramster given determines the access rights available o
for subsequent uses of the node handle; it also establishes access
synchronization with other users of the node. The TIME LIMIT 's
paramster allows the specification of a time limit v
for the delay imposed on OPEN by the existence of locks on the -
5
41 o
3-69 =
GRS 205,505 25 20 A0SR L A D T A A e U AT e T RS R DR S 5 !, VLD L 05

PR

“”

-~

<
SO
Tt

- -
[
!'r.'
L]

AT

PO NN

node. A delayed OPEN call conpletes when the node is unlocked or
the specified time limit has elapsed.

Parameters:
NODE is a node handle, initially closed, tO0 be opened to
the identified node.
NAME is the pathname identifying the node to be opened.
BASE is an open node handle to a base node for
node identification.
KEY is the relationship key for node identification.
RELATICN is the relation name for node identification.
INTENT is the intent of subsequent operations on the node; the

actual parameter takes the form of an array aggregate.
TIME LIMIT is a value of type DURATION, specifying a time limit

for the delay on waiting for the unlocking of a node in

accordance with the desired INTENT.

SBECURITY_VIOLATION is raised only if the conditions for
other exceptions are not present.

An open node handle acts as if the handle forms an unnamed temporary
secondary relationship to the node; this means that, if the opened
node pointed to is renamed (potentially by ancther process), the
operations on the cpened node handle track the renaming.

42

Ee B LA B T) T e T NI TR LR R AL RIS s) St B Ll #ig 84 Sy € I g i - vy v, g 3 L LR B

PROPOSED MIL~STD~CAILS
31 OCT 1984

It is possible to open a node handle to an unobtainable node or to
an inaccessible node. The latter is consistent with the ‘fact that
the existence of a relationship emanating from an accessible node to
vhich the user has READ RELATIONSHIPS rights cannot be hidden from
the user.

5.1.2.2 Closing a node handle -
procedure CLOSE (NODE: in out NODE TYPE);

Purpose:
This procedure severs any association between the node handle NODE
and the node and releases any associated lock an the node imposed
by the intent of the corresponding OPEN or CHANGE INTENT operation.
Closing an already closed node handle has no effect.

Parameter:

NODE is a node handle, initially open, to be closed.
Exceptions: none
Notes:

A NODE_TYPE variable must be CLOSEd before another OPEN can be
calledmingthemmmﬂriableasmlpamnterw the
formal NODE parameter of OPEN.

5.1.2.3 Changing the specified intent of node handle usage -~

procedure CHANGE INTENT (NODE: in out NODE TYPE;
INTENT: in INTENTION:
TIME LIMIT:in DURATION := DURATION'FIRST);

Purpose:

This procedure changes the specified intent of usage of the node
handle NODE. It is semantically equivalent to closing the node
handle and recpening the node handle to the same node with the
INTENT and TIME LIMIT parameters of CHANGE INTENT, except that
CHANGE _INTENT guarantees to return a node handle referring to the
same node as referred to prior to the call (ses

the issue explained in the note below).

Parameter:
NODE is an open node handle
INTENT is a specification of the usage intent as for OPEN
TIME LIMIT is a duration for the maximm delay of the ocperation
caused by locks, as for OPEN

Exceptions:
NAME ERROR is raised if the node to be cpened is uncbtainable
is not

v o]

e

o

[

.0
-
Y

Ta

....... PR A i S 2 D i i AR A B A Stue 8ty 2 o G n

PROPOSED MIL~STD-CAIS
31 OCT 1984

LOCK ERROR is raised if the operation is delayed beyond the
specified time limit due to the existence of locks on
the node in conflict with the specified INTENT.

ACCESS VIOLATION is raised if the the current process's
discretionary access control rights are insufficient
to obtain access to the node oconsistent with the
specified by INTENT. ACCESS VIOCLATION is raised only
ifﬂucaﬂiﬁmfcrmmumtprm

mwmmunisedxfﬂ\eattmtoobuinmstom
node specified by INTENT represents a violation of
mandatory access controls for the CAIS.

SECURITY VIOLATION is raised only if the conditions for

Notes:

Use of the sequence of a CLOSE and an OPEN operation instead of a
Gmmrmroperanmcamntgmranteettntﬂnsmmdeis
@ened since relationshipe, and therefore the node identification,
may have changed since the previous OPEN on the node.

5.1.2.4 Examining cpen status of node handle -

function IS OPEN (NODE: in NODE TYPE) retwrn BOOLEAN;

'mis;functim returns TRUE or FALSE according to the cpen status
of the ncde handle NODE.

Parameter:
NODE is a node hardle.

Exceptions: none

5.1.2.5 Examining kind of node -
function KIND (NODE: in NODE TYPE) return NODE_KIND;
Purpose: _
This function returns the kind of a node, either FILE, PROCESS,
STRUCTURAL..

Parameter:
NODE is an open node hardle.

H
STATUS_ERROR is raised if the node handle NODE is not open.
INTENT VIOLATION is raised if the node was not '

5.1.2.6 Obtaining unique primary name -
function PRIMARY NAME (NCDE: in NODE TYPE) return NAME STRING;:

Purpose:
This function returns the unique primary name of the node identified

by NOOE.

Parameter:
NODE is an open

Exceptions:
NAME ERROR is raised if

hardle identifying the node.

;

STATUS ERROR is raised if

LOCK_ERFOR

is

READ RELATIONSHIPS to any node traversed on the
primary path cannot be cbtained due to an existing
lock on the node.

INTENT VICLATION is raised if NODE was not opened with an intent

establishing the right to read relationships.

ACCESS VIQLATION is raised if the current process's discretionary
access control rights are insufficient to traverse

5.1.2.7 Obtaining relationship key of a primary relationship -

function PRIMARY KEY (NODE: in NODE_TYPE)
return RELATIONSHIP KEY:

Purpose:
This function returns the relationship key of the last path element

of the unique primary path to the node.

- Paramster:
E NODE is an open node handle identifying the node. -
- Exceptions: -
? NAME ERROR is raised if the parent node of the node identified
- by NOCE is inaccessible. AT
STATUS ERRCR is raised if the node handle NODE is not open. N
LOCK ERFOR is raised if the parent node is locked against reading
relationships. ..
INTENT VIQLATION is raised if NODE was not cpened with an intent -
establishing the right to read relationships. i
ACCESS VIGLATION is raised if the current process's discretionary
access control rights are insufficient to obtain e
access to the node's parent consistent with intent to -

‘..v
45 o

bl
4

|

‘, PAY] m

-

-
¢

-
o Ca

PROPOSED MIL~STD-CAIS
31 OCT 1964

READ_RELATIONSHIP. ACCESS VICLATION is raised only if
the conditions for NAME ERROR are not present.

5.1.2.8 Obtaining relation name of a primary relationship -

function PRIMARY RELATION (NODE: in NODE TYPE)
return REIATION NAME;

Purpose:
This function returns the relation name of the last path element of

the unique primary path to the node.

Parameter:
NODE is an open node handle identifying the node.

Exceptions:
NAME ERROR is raised if the parent node of the node identified by
NOCE is inaccessible.
STATUS_ERROR is raised if the node handle NODE is not open.
LOCK ERROR is raised if the parent node is locked against reading
relationshipe.

INTENT VIGLATION is raised if NODE was not opened with an intent
establishing the right to read relationships.
ACCESS_VICLATION is raised if the current process's discretionary
access oontrol rights are insufficient to obtain
access to the node's parent consistent with intent to
READ RELATIONSHIPS. ACCESS VIGLATION is raised only if

the conditions for NAME ERFOR are not present.

5.1.2.9 Obtaining relationship key of last relation traversed -
function PATH KEY (NODE: in m_m) return RELATIONSHIP KEY:
Purpose:
This function returns the relationship key of the last path element
of the path used in opening this node handle.

Parameter:
NODE is an open node hardle.

ions:
STATUS_ERFOR is raised if the node handle NODE is not open.

'l‘l

DA
T

i~ ’ - S 5 i . o Py
han N UL AN AL AV A DA i A RACMANCUIR A S P 2 i e St e S dha i, Jgge. g S IR T A AN TNwCYY

PROPOSED MIL~STD-CAIS
31 OCT 1984
5.1.2.19 Obtaining relation name of last relation traversed -
function PATH RELATION (NODE: in NODE_TYPE) return RELATION NAME;
Purpose:
This function returns the relation name of the last path element of
the path used in opening this node handle.

Parameter:
NODE is an open node handle.

Exceptions:
STATUS_ERROR is raised if the node handle NODE is not open.

47 G

iUl b MV it i

.

5.1.2.11 Obtaining a partial pathname
function BASE PATH (NAME: NAME STRING) return NAME STRING;

Purpose:
This function checks the syntactic legality of the pathname NAME.
It returns the pathname cbtained by deleting the last path eleament
fran NAME. It does not establish whether the pathname identifies an
existing node; only the syntactic properties of the pathname are
examined

Parameters:
NAME is a pathname (not necessarily identifying a node).

Exceptions:
NAME ERROR is raised if NAME is a syntactically illegal pathname.

5.1.2.12 Obtaining the name of the last relationship in a pathname
function LAST RELATION (NAME: NAME STRING) return RELATION NAME:

Purpose:

This function checks the syntactic legality of the pathname NAME.
It returns the name of the relation of the last path element of the
pathname NAME. It does not establish whether the pathname
identifies an existing node; only the syntactic properties of the
pathname are examined.

Parameters:
NAME is a pathname (not necessarily identifying a node).

Exceptions:
NAME ERFOR is raised if NAME is a syntactically illegal pathname.

5.1.2.13 Obtaining the key of the last relationship in a pathname
function LAST KEY (NAME: NAME STRING) return RELATIONSHIP KEY:

Purpose:

This function checks the syntactic legality of the pathname NAME.
It returns the relationship key of the last path element of the
pathname NAME. It does not establish whether the pathname
identifies an existing node; only the syntactic properties of the
pathname are examined.

Parameters:
NAME is a pathname (not necessarily identifying a node).

Exceptions:
NAME ERROR is raised if NAME is a syntactically illegal pathname.

Rty gl e SeNL L ose o
DA R e I i oy S S T B . T T T W T T O T P ™ P T

PROPOSED MIL~STD-CAIS
31 OCT 1984

5.1.2.14 Querying existence of node

function OBTAINABLE (m:m_'m:m return BOOLEAN;
Purpose:

This function returns TRUE if the node identified by NODE is not
uncbtainable and not inaccessible. It returns FALSE otherwise.

-~

Parameters:
NCDE is an open node handle identifying the node.

STATUS ERFOR is raised if NODE is not an open node handle. :

Sarn A

Additional Interfaces:

function OBTAINABLE (NAME: NAME STRING) return BOOLEAN ;;:;
is -4
NODE: NODE_TYPE;
RESULT: BOOLEAN; -
OPEN(NCDE, NAME, (EXISTENCE)); =
RESULT := OBTAINABLE(NCDE); |
CLOSE(NCDE) ; N

return RESULT;

when others => return FALSE; =
end OBTAINABLE; -

- function OBTAINABLE (BASE: in NODE_TYPE;

: KEY: in RELATIONSHIP_KEY;

RELATION: in RELATION NAME := DEFAULT RELATION) v
“return BOCGLEAN —

is
NODE: NODE TYPE:
RESULT: BOOLERN;

OPEN(NODE, BASE, KEY, RELATION, (EXISTENCE)): o

RESULT := OBTAINABLE(NCDE);

CLOSE (NCDE) ;

return RESULT; —
exception -

when others => return FALSE:
end OBTAINABLE;

———— L e e

- .
Notes:)
CBTAINABLIE can be used to determine whether a node identified via a
secondary relationship has been made uncbtainable by a DELETE
operation or is inaccessible to the current process (see Note in
m 5.10201-1)0 "_

49 R

................ <, . . . R -
LAY .-.q'..-'.ﬂ".' A Q...‘..'. D IR R T A AP e PRI IR I A LA ML R B Ry
PRSP S A AR AR S SO CSR DR TR O -."A'-:"-LL'_-;;,‘{-;L.; Y R T, A 2 A A T A A Y

.

AR V5 re

te s

AR

Yy |

Loy

o]

>

g

Parameters:
NODE1 is an open node handle to a node.
NODE2 is an open node handle to a node.
Exceptions:
STATUS_ERROR is raised if the node handles NODEl or NODE2 are not

open.
Additional Interface:

function IS SAME(NAMEl: in NAME STRING;
NAME2: in NAME STRING)
return BOCLEAN
is
NODE1, NODE2: NODE_TYPE;
RESULT: BOOLEAN;

OPEN(NODE1l, NAMEl, (EXISTENCE)):

OPEN(NCDE2, NAME2, (EXISTENCE)):
exception
when others =>
CLOSE(NCDEL) ;
raise;
end;
RESULT := IS_SME(m. NCDE2);
CLOSE(NODEL) ;
CLOSE(NCDE2) ;
return RESULT:
erd IS SAME;

Notes:

Sameness is not to be confused with equality of attribute values,
relationships and contents of nodes, which is a necessary but not a
sufficient criterion for sameness.

T T Y I T R Y I T I

. R yory AP ot
. B 0 R o Y Sl i i " e Sk g an e S I e e 4 bR ATR 40 A B ¢ B 0 R e ¢ D i Db g B~ e he gt i e I
TR [g 2 ot gy e e

) PROPOSED MIL-STD-CAIS
N 31 OCT 1984

N S.1.2.16 Obtaining open node handle to parent node
procedure GET PARENT (PARENT: in NODE_TYPE
NODE: in out NODE TYPE
INTENT: in INTENTION := (READ);

»
v ‘s
- wg

f,: TIME LIMIT: in DURATION := DURATION'FIRST);
3 Purpose: ¢
This procedure returns an open node handle in PARENT to the parent
< node of the node identified by the open node handle NODE. The s
intent under which the node handle PARENT is opened is specified by
o INTENT. A call on GET PARENT is equivalent to a call OPEN(PARENT,
- NODE, "“, "PARENT", (INTENT)). .
Parameters: vl
x PARENT is a node handle, initially closed, to be opened to
. the parent node.
by NODE is an open node handle identifying the node.
~ INTENT is the intent of subsequent Operations on the node
- handle PARENT.
TIME LIMIT is a value of type DURATION, specifying a time limit ‘3
for the maximm delay on waiting for the unlocking of .
- the node in accordance with the specified intent.
Exceptions: -
NAME ERROR is raised if the node identified by NODE is a
top~level node or if its parent node is inaccessible. 3
i} STATUS ERROR is raised if the node handle PARENT is open prior to -
< the call or if the node handle NOCE is not open.
. USE_ERROR is raised if INTENT is an anpty intent
- specification. :
X LOCK ERROR is raised if the opening of the node is .
delayed beyorxd the specified TIME LIMIT due to the
existence of locks in oonflict with the specified -
INTENT.
o INTENT VICLATION is raised if NODE was not opened with an intent)

- establishing the right to read relationships.

2 ACCESS VIGLATION is raised if the current process's discretionary
: access control rights are insufficient to obtain
' access to the parent node with the specified INTENT.

SECURITY VICLATION is raised if the attamwpt to qain EXISTENCE
access to the parent node represents a violation of

P mandatory access controls for the CAIS.

SECURITY_VICLATION is raised only if the conditions

. for other exceptions are not present.

A B I
« 0

51 e

T“.‘ Ty

-
.

IR AV

R

CRRA SRS DN A S Ml el 0o bagh wadh ot Jante vasl Bod Sodh Moty

PROPOSED MIL~STD-CAIS
31 OCT 1984

5.1.2.17 Copying a node

procedure COPY_NODE (FROM: in NODE_TYPE;
TO_BASE: in NODE_TYPE;
TO_KEY: in RELATIONSHIP KEY;

KEY
TO_RELATION: in RELATION NAME :=

This procedure oopies a file or structural node that does not have
emanating primary relationships. The node copied is identified by
node

Parameters:
FROM is an open node handle to the node to be copied.
TO_BASE is an open node handle to the base node for
identification of the node to be created.
TO KEY is a relationship key for the identification of the
node to be created.
TO RELATION is a relation name for the identification of the node
- to be created.
Exceptions:
ERROR raised if the new node identification is illegal

is
or if a node already exists with the identification
gi

USE_ERROR is raised if the original node is not a file or

STATUS_ERROR is raised if the node handles FROM and TO_BASE are
not cpen.
INTENT VIGLATION is raised if FROM not cpened with an intent

conditions for NAME ERROR are present.
SECURITY_VIOLATION is raised 1if the operation represents a

52

3 .« n
P T R A P AL RS
K RGP I I R e I L P .
N UIPL SNPGRS

TR ET R T g

20 Pl N NTR LR, 2 A, . P Py BT iy Y b =) e G Aty £ .

PROPOSED MIL~STD-CAIS
¢ 31 OCT 1984

violation of mandatory access oontrols and the
D conditions for other exceptions are not present.

gy \.c

P Additional Interface:
N
N procedure COPY NODE (FROM: in NODE_TYPE;
1) TO: in NAME_STRING)
is
TO_BASE: NODE_TYPE:
begin

OPEN(TO_BASE, BASE PATH(TO), (APPEND RELATIONSHIPS));
COPY_NODE(FROM, TO_BASE, LAST KEY(TO), LAST RELATION(TO)):
CLOSE(TO_BASE) ;
exception
when others =>
CLOSE(TO_BASE) ;
raise;
end COPY_NCDE;

%

o 5.1.2.18 Copying trees
v procedure COPY_TREE (FROM: in NODE_TYPE:
> TO_BASE: in NODE_TYPE;
N TO_KEY: in RELATIONSHIP_ KEY:
— TO_RELATION: in RELATION NAME :=
DEFAULT _RELATION);
Purpose:

This procedure oopies a tree of nodes formed by primary

relationships emnating fram the node identified by the node handle

FROM. Primary relationships are recreated between corresponding

copied nodes. The root node of the newly created tree corresponding

to the FROM node is the node identified by the cambination of the
" TO_BASE, TO KEY and TO_REIATION parameters. If an exception is
) raised by the procedure, none of the nodes are copied. Secondary
y relationships, attributes, and node contents are copied as_described
. for OOPY NODE with the following additional rules: secondary
= relationships between two nodes which both are copied are recreated

between the two oopies. Secondary relationships emanating fram a

node which is copied, but which refer to nodes outside the tree

being oopied, are oopied so that they emanate fram the copy, but

still refer to the old (uncopied) node. Secondary relationships

emnating fram a node which is not copied, but which refer to nodes
» inside the tree being copied, are unaffected.
) Parameters:
>y FROM is an open node handle to the root node of the tree to
o be copied.
o TO_BASE is an open node handle to the base node for
v identification of the node to be created as root of the

new tree.

- TO_KEY is a relationship key for the identification of the
- 53
'_'
» 3-81 o
> ‘
.. |

Y P D R P N I 0 A T T A R I R R N T LD
Sarat e L o Lo L APS LN KN BN TR - LS, SR

''''''''''

node to be created as root of the new tree.
TO_REIATION is a relation name for the identification of the node
to be created as root of the new tree.

Exceptions:

NAME ERROR is raised if the new node identification is illegal or
or if a node already exists with the identification
given for the new node to be created as a copy of the
node identified bym.

STATUS_ERFOR is raised if the node handles FROM and TO_BASE are not

open..

USE ERROR is raised if the original node is not a file or
structural node.

LOCK ERROR is raised if any node to be oopied is locked against
readaccesstoattn.butes,relaumslupsorcmtents

INTENT VIOLATION is raised if FROM is not open with an intent
establishing the right to read node contents,
attributes and relationships or if TO _BASE is not open
with an intent establishing the right to append
relationships. INTENT VICLATION is only raised if the
carlit.t.anformmg‘mtm

mwmmisnuadift‘mmmt process's discretionary
access control rights are insufficient to cbtain access
to each node to be copied with intent READ.

SECURITY VIOLATION is raised if the operation represents a
vioclation of mandatory access <ontrols and the
conditions for other exceptions are not present.

Additional Interface:

procedure COPY_TREE (FROM: in NODE_TYPE;
TO: in NAME_STRING)
is
‘TO_BASE: NODE_TYPE;

OPEN(TO_BASE, BASE PATH(TO), (APPEND REIATIONSHIPS)):
COPY_TREE(FROM, TO_BASE, LAST KEY(TO), LAST RELATION(TO));
CLOSE(TO_BASE) ;
exception
when others =>
CLOSE(TO_BASE);
raise;
end COPY TREE:

5.1.2.19 Renaming primary relationship of a node

procedure RENAME(NODE: in NODE_TYPE:
NEW_BASE: in NODE TYPE;
NEW KEY: in RELATIONSHIP KEY:
NEW RELATION: in RELATION NAME :=
DEFAULT RELATION);
Purpose:

This procedure renames a file or structural node. It deletes the
prinnrytelatiamhxptoﬂwmdeidamifiedbymm ingtalls a
new primary relationship to the node, eamanating from the node
identified by NEW BASE, with key and relation name given by the
mmmmmm parameters. n\eparenttelatimshlpls

node as target track the renaming, i.e., they have the renamed node
as target.

Parameters:
NODE is an open
NEW BASE is an open

emanates.

NEW_KEY is a relationship key for the new primary
relationship.

NEW _RELATION is a relation name for the new primary
relationship.

Exceptions:

NAME ERFOR is raised if the new node identification is illegal or
if a node already exists with the identification given
for the new node.

USE_ERROR is raised if the node identified by NODE is not a file
or structural node or if the renaming cannot be
accomplished while still maintaining acircularity of
primary relationships (e.g., if the new parent node
would be the renamed node).

STATUS_ERFOR is raised if the node handles NODE and NEW BASE are
not cpen.

INTENT VIOLATION is raised if NODE was not opened with an intent
establishing the right to write relationships or if
NEW BASE was not opened with an intent establishing
ﬂ:erighttoappmdrelaumﬂu.ps

AXESS VICLATION is raised if the current process does not have
sufficient discreticnary access oontrol rights to
cbtain access to the parent of the node to be renamed
with intent WRITE_RELATIONSHIPS and the conditions for
MmR)Raremtpresmt

smmm_vzommm is raised if the operation represents a
violation of mandatory access controls.

SBECURITY VIOLATION is raised only if the conditions
for other exceptions are not present.

55

....................

................................
.....................................

> Additional Interface:
i procedure RENAME (NODE: in NODE_TYPE;
l p NEW_NAME: in NAME_STRING)
‘ is
. NEW _BASE: NODE_TYPE;
i begin
S OPEN(NEW_BASE, BASE_PATH(NEW NAME), (APPEND RELATIONSHIPS));
COPY_TREE(FROM, NEW_BASE, LAST KEY(NEW NAME),
» LAST RELATION(NEW_NAME)) ;
- CLOSE (NEW_BASE):
exception
. when others =>
- CLOSE (NEW_BASE) ;
Cat raise;
_ end RENAME;
2
e Notes:
Open node handles from existing processes track the renamsd node.
‘.'-i
¢
) 5.1.2.28 Deleting a node
. procedure DELETE NODE(NODE: in out NODE TYPE):
- oo Purpose:
. This procedure deletes the primary relationship to a node identified
by NODE. The node becames uncbtainable. The node handle NODE is l
s closed. If the node is a process node and it is not yet TERMINATED
- (Section 5.2), DELETE NCDE aborts the process.
‘.
Parameters:
. NODE is an open node handle to the node which is the target
- of the primary relationship to be deleted.
Exceptions:

NAME ERFOR is raised if the parent node of the node identified by
NOCE is inaccessible.
USE_ERROR is raised if any primary relationships emanate fram the
= node.
STATUS_ERFOR is raised if the node handle NODE is not open prior to

the aall.
- LOCK ERFOR is raised if access, with intent WRITE_RELATICNSHIPS,
o to the parent of the node to be deleted cannot be
- cbtained dus to an existing lock on the node.
INTENT VIGLATION is raised if the NODE was not opened with an
o intent including EXCLUSIVE WRITE.
ACCESS VIOGLATION is raised if the current process doss not have

sufficient discretionary access control rights to cbtain
access to the parant: of the node to be deleted with
intent WRITE RELATIONSHIPS and the conditions for
for NAME ERROR are not present.

v
.

40

PAeN

s 2 8

56

$

(R '..'.-_'.-_ --_"-' Wt e ..-.‘.-$- et L e e N R T A N W A S L P S UL IR TN S S] P . " Ve v
A e T 3 ¥ e S, » o, o . ARG RS ‘.- AN o O AR R o.,'- e -

N

PROPOSED MIL~STD-CAIS

31 OCr 1984 v
E~
P SECURITY VICLATION is raised if the operation represents a 2
N violation of mandatory access controls.
o SECURITY_VIOLATION is raised only if the conditions for .
N Additional Interface:)
% procedure DELETE NCDE(NAME: in NAME STRING) 1
fty is
, NODE: NODE_TYPE; -
A begin
3 OPEN(NODE, NAME, (EXCLUSIVE WRITE)):
N DELETE_NCDE (NCCE) ; .
¥ exception -
- when others => ¥
CLOSE (NCDE) ;
raise; X
end DELETE NCDE; ¥
Notes: -
3
» The DELETE NMODE cperations camnot be used to delete more than one y
node in a single operation. It is left to an lementation
. decision, whether and when nodes whose primary relationships have .

been broken are deleted. However, secondary relationships to such
nodes must remain until they are explicitly deleted using the UNLINK

X procedures.
" 5.1.2.21 Deleting primary relationships of a tree .
procedure DELETE TREE(NODE: in out NODE TYPE): 2

t

” This procedure effectively performs the DELETE NODE operation for a

. specified node and recursively applies mmmwmmda

Xy whose parent is the the designated node. The crder in which the

- deletions of primary relationships is performed is not specified. "
j-; If ¢the operations raise an exception, none of the primary X

- Parameters:
X NODE is an open node handle to the node at the root of the -
:Z: tree whose primary relationships are to be deleted.
Exceptions:

NAME ERROR is raised if the parent node of the node identified

by NDE or any of the nodes to be deleted are

‘o inaccessible.
. STATUS_ERROR is raised if the node handle NODE is not open prior to
o the call. .
o LOCK ERROR is raised if access, with intent WRITE RELATIONSHIPS, N

to the parent of the node specified by NODE cannot be

57 R

TR R BT T A T e T - LY Al "ol ol - > % T L
CE I IR I e R IS S I A Sl AU A Nk S R SEE R A A e B At it A e il o v o 2o oy e kot Do ot ool e e e S e R
- - - - - - ER AN . - - - - - v - TW. & WY

s PROPOSED MIL~STD-CAIS
31 OCT 1984

o obtained or if access, with intent EXCLUSIVE WRITE,
path traverses the node identified by NODE, due to an
n existing lock on the node.
- INTENT VIOLATION is raised if the NODE was not opened with an
; intent including EXCLUSIVE WRITE intent.
N ACCESS VIOLATION is raised if the current process does not have
SRS sufficient discretionary access control rights to
g obtain access to the parent of the node specified by
- NODE with intent WRITE RELATIONSHIPS or to obtain
LY access to any mnode to be deleted with intent
.~ EXCLUSIVE WRITE and the conditions for NAME ERROR are
not present.
S SECURITY VIOLATION is raised if the operation represents a
S violation of mandatory access controls.
SECURITY VIOLATION is raised only if the conditions
for other exceptions are not present.

Additional Interface:
procedure mm_m(m: in m_smms)
is

NODE: NODE_TYPE;
».‘-. begin
OPEN(NODE, NAME, (EXCLUSIVE WRITE)):
. DELETE_TREE(NCOE) ;
CL. exception
" when others =>
CLOSE(NCDE) ;
raise;
o end DELETE TREE;
Notes:
. This oOperation can be used to delete more than one primary
relationship in a single operation.
o 5.1.2.22 Creating user-defined secondary relationshipe
“ procedure LINK (NODE: in NODE_TYPE;
NEW_BASE: in NODE_TYPE;
NEW_KEY: in RELATIONSHIP KEY;
. NEW_RELATION: in RELATION NAME :=
o DEFAULT RELATION):
- Purpose:

This procedure creates a secondary relationship between two existing
nodes. The procedure takes a node handle NODE on the target node, a
node handle NEW BASE on the source node, and an explicit key NEW KEY
and relation name NEW RELATION for the relationship to be
established fram NEW BASE to NODE.

N s, Za Via Noa Ram” P A Mo Wi i L L S ot oy 98, U0 oy ,a'.-"-)'«'»'."."".'-‘.-.-.-,_ L p~ ot g el e g i

PROPOSED MIL~STD-CAIS

31 OCT 1984
N
]
X Parameters:
N NODE is an open node handle to the node to which the new
secondary relationship points.
v NEW_BASE is an open node handle to the base node fram which
K. the new secondary relationship to the node emanates.
b NEW_KEY is a relationship key for the new secondary
relationship.
) NEW_RELATION is a relation name for the new secondary
relationship.
: Exceptions:
~ NAME ERROR is raised if the relationship key or the relation
o name are illegal or if a node already exists with the
= identification given by NEW BASE, NEW KEY, and
N NEW_RELATION.
. STATUS_ERROR is raised if the node handles NODE or NEW BASE are
- INTENT VIOLATION is msed if NEW BASE was not opened with an
o intent establishing the right to append relationships.
3.; mwmmummmmmumwa
- violation of mandatory access controls.
b SECURITY VICLATION is raised only if the conditions
e for other exceptions are not present.
- Additional Interface:
- procedure LINK (OLD NAME: in NAME_STRING;
— NEW_NAME: in NAME_STRING)
o is
. NODE,
~ NEW _BASE: NODE TYPE;
- begin
OPEN(NCDE, OLD) NAME, (EXISTENCE)):
X OPEN(NEW_BASE, BASE_PATH(NEW_NAME), (APPEND RELATIONSHIPS));
e LINK(NODE, NEW B'\SE. LAST KEY(NW NAME) ,
- LAST RELATION(NEW NAME)):
- CLOSE(NEW_BASE) ; - -
2 CLOSE (NOOE) ;
when others =>
N CLOSE(NBEW_BASE) ;
9 CLOSE (NODE) ;
raise;
. and LINK;
- 5
.:, .
-
-
A -
-. 'l-‘
" 59 <)

PAAAI e LAl Al oend S | salh T B i e e cp e

RELATION: in RELATION NAME :=
DEFAULT RELATION):

31 OCT 1984
5
]
N o 5.1.2.23 Deleting user-defined secondary relationshipe
p procedure UNLINK (BASE: in NOCE_TYPE;
' KEY: in RELATIONSHIP KEY;

.t
E:t Purposes
- This procedure deletes a secondary relationship identified by the
H BASE, KEY and RELATION parameters.
D Parameters:
: BASE is an open node handle to the node fram which the
relationship emanates which is to be deleted.
v KEY :lthe relationship key of the relationship to be
RELATION is the relation name of the relationship to be
L deleted.
V-

Exceptions:
N NAME_ERFOR is raised if the relationship identified by BASE, KEY
o and RELATION does not exist.

USE_ERFOR i.lniudiftln.p‘ciﬁ.edrelatimshipha primary
relationship.

STATUS ERROR is raised if the BASE is not an open node handle.
MMVIGATICN is raised if BASE was not opened with an intent
establighing the right to write relationships.
SECURITY VIQLATION is raised if the operation represents a
viclation of mandatory access controls.
SECURITY VICLATION is raised only if the conditions

for other exceptions are not present.
Additional Interfaces
K procedure UNLINK(NAME: in NMAME_STRING)

is

BASE: NODE_TYPE;

OPEN(BASE, BASE PATH(NAME), (WRITE RELATIONSHIPS));
UNLINK(BASE, LAST K!Y(M), LAST mmcn(m)),
CLOSE(BASE) ;
exception
when others =>
CLOSE(BASE) ;
raise;
end UNLINK;

. Notes:
. WNLINK can be used to delete secondary relationships to nodes that
V. have became uncbtainable.

Clkine ST e 4 ‘\'.bl"l-"'-“*

...............
R e T L T AT T S S L PR P T
o o .- - N

[ARE-E¥in RIS T SOER S Nl MR ML S et

PROPOSED MIL~STD-CAIS
31 OCT 1984

5.1.2.24 Iteration types and subtypes

type NODE_ITERATOR is private;
subtype RELATIONSHIP KEY PATTERN is RELATIONSHIP KEY;
subtype RELATION NAME PATTERN is RELATION NAME;

These types are used in the following interfaces for iterating over a
set of nodes. RELATIONSHIP KEY PATTERN and RELATION NAME PATTERN follow
the syntax of relationship keys/relation names, except that ‘?‘ will
match any single character and '*' will match any string of characters.

NODE_ITERATOR is a private type assumed to contain the bookkeeping
information necessary for the implementation of the MORE and GET_NEXT
functions.

5.1.2.25 Creating an iterator over nodes

NODE: in NODE TYPE:
KIND: in NODE KIND;
KEY: in RELATIONSHIP KEY PATTERN := "*";

PRIMARY ONLY:in BOOLEAN := TRUE);

Purpose:

This procedure establishes a node iterator ITERATOR over the set of
nodes that are the targets of relationships emanating framn a given
node identified by NODE and matching the specified KEY and RELATION
patterms. The nodes are returned in ASCII lexicographical order by
relation name and then by relationship key. Nodes that are of a
different kind than the KIND specified are amitted. If PRIMARY ONLY
is true, then only primary relationships are oonsidered when
creating the iterator.

Parameters:

TTERATOR is the node iterator returned.

NODE is an open node handle to a node whose relationships
form the basis for constructing the iterator.

KIND is the kind of nodes selected by ITERATE.

KEY is the pattern for the relationship keys of nodes on
which the iterator is based.

RELATTION is the pattern for the relation names on which the
iterator is based.

PRIMARY ONLY is a boolean; if TRUE, only primary relationships will
be used in oconstructing the iterator; if FALSE, all
relationships satisfying the patterns will be used.

Exceptions:

STATUS_ERFOR is raised if NODE is not an open node handle.

INTENT VIOLATION is raised if NODE was not opened with an intent
establishing the right to read relationships. -

SECURITY_VIOLATION is raised if the operation represents a

6l

. Sars Bk itk adhs e "
AT S A AL -l A a i S Ie . S Ao AL B b, e o -;T-.‘H.‘TT

£

£
A
~
ol

]

ey
atalal

!,

1 4

o e GA)

-
4 _ll .'-.

..

L3

“
N
-

o b

.
4

»

RRSAY T

-

a \'d

LI

£ r

g
R
.

violation of mandatory access controls.
SECURITY VIOLATION is raised only if the conditions

for other exceptions are not present.
Additional Interface:

procedure ITERATE(ITERATOR: out NODE_ITERATOR;
NAME: in NAME STRING;
KIND: in NODE_KIND;
KEY3 in RELATIONSHIP KEY PATTERN := "*";
RELATION: in RELATION NAME PATTERN :=

NODE: NODE_TYPE;

in
OPEN(NODE, NAME, (READ RELATIONSHIPS)):
TTERATE(ITERATOR, NCDE, KIND, KEY, RELATION, PRIMARY QNLY);
CLOSE (NODE) ;
exception
when others =>
CLOSE (NCDE) ;
raise;
end ITERATE;

Notes:

%

The functions PATH KEY and PATH RELATION may be used to

the relationship which caused the node to be included in
iteration. The iteration interfaces can be used to determine (
subsequently delete) relationships to inaccessible or uncbtainable
nodes .

B &

5.1.2.26 Determining iteration status

function MORE (ITERATOR: in NODE_ITERATOR)
return BOOLEAN;

Purpose:
The function MORE returns TRUE or FALSE, depending on whether all
nodes contained in the node iterator have been retrieved with the

GET_NEXT procedure.

Parameters:
ITERATOR is a node iterator previously set by the procedure
ITERATE.
Exceptions:
USE_ERFROR raised if the ITERATOR has not been previcusly set

is
by the procedure ITERATE.

62

PROPOSED MIL~STD-CAIS
31 OCT 1984

N 5.1.2.27 Getting the next node in an iteration

procedure GEI‘_NE(T(ITERA'IOR: in out NODE_ITERATOR;
NEXT NODE: in out NODE TYPE;

- INTENT': in INTENTION := (EXISTENCE):

TIME LIMIT: in DURATION := DURATION'FIRST):

Purpose:

A The procedure GET_NEXT returns an open node handle to the next node
J.ntheparatrleterm('rbm&‘.- the intent under which the node handle
is opened is specified by the INTENT parameter. If NEXT NODE is
oOpen prior e call to GET NEXT, it is closed prior to being
opened to the next node. A time limit can be specified for the
maximam ted if the node to be opened is locked against

fied INTENT.

ITERATOR is a node iterator previously set by ITERATE.
NEXT NODE is a node handle, to be opened to the next
node on the ITERATOR.
INTENT is the intent of subsequent operations on the node
handle NEXT NODE.
TIME LIMIT is a value of type DURATION, specifying a time Llimit
for the maximum delay on waiting for the unlocking of
- the node in accordance with the specified intent.

Exceptions:

USE_ERROR is raised if the ITERATOR has not been previcusly set

by ITERATE or if the iterator is exhausted, i.e., MORE

(ITERATOR)=FALSE or if INTENT is an empty array.
~. LOCK ERROR is raised if the opening of the node is delayed beyond
thespecxfled‘I'MLIMITduetotheexlstenceoflocks
. in conflict with the specified INTENT.
ACCESS_VIOLATION is raised if the current process's discretionary —
access oontrol privliges are insufficient to obtain —
access to the parent node with the specified INTENT.

5.1.2.28 Setting the CURRENT NODE relationship
procedure SET_CURRENT NODE(NODE: in NODE_TYPE): -
Purpose: _
This procedure specifies the node identified by NODE as the current
node. The CURRENT NODE relationship of the current process is
changed accordingly.

:j' Parameters:

& NODE is an open node handle to a node to be the new target of
- the CURRENT NODE relationship emanating from the current .
.. process node. =
-
Exceptions:

63

LN S e BT A e 4 v
Al e P R T

"
st

-

;- ‘—-.
T
r s

STATUS ERFOR is raised if the node handle NODE is not open.

LOCK ERFOR is raised if access, with intent WRITE RELATIONSHIPS,

- to the current process node cannot be cbtained due to an
existing lock on the node.

ACCESS VIOLATION is raised if the current process does not have
sufficient discretionary access control rights to obtain
access to the ourrent process node with intent
WRITE RELATIONSHIPS and the conditions for NAME ERROR
are not present.

SECURITY VIOLATION is raised if the operation represents a
violation of mandatory access controls.

SECURITY VICLATION is raised only if the conditions for
other exceptions are not present.

Additional Interface:

procedure SET_CURRENT NODE(NAME: in NAME STRING)
is
NODE: NODE _TYPE;
begin
OPEN(NODE, NAME, (EXISTENCE)):
SET_CURRENT NODE (NODE) ;
exception
when others =>
m_ass(m):

raise;
end SET_CURRENT NODE;

5-1.2.29 Getting an open node handle to the CURRENT NODE
procedure GET_CURRENT NODE(NCDE: in out NODE_TYPE):

Purpose:
This procedure returns in NODE an open node handle to the current

node of the current process; the node handle is opened with intent
EXISTENCE.

Parameter:
NODE is a node handle, initially closed, to be opened to
the current node.
Exceptions:
STATUS_ERROR is raised if NODE is an open node handle prior to the

call.

IOCK ERROR is raised if access, with intent READ RELATIONSHIPS,
to the current process node cannot be obtained due to
an existing lock on the node.

SECURITY VIOLATICN is raised if the operation represents a
violation of mandatory access controls.
SECURITY_VIOLATION is raised only if the conditions
other exceptions are not present.

DI

+ T ;‘1:_%..‘_5 Lo

3

- ; /'{.).)l (l

¥ :“-’ &P

A A AN “

The call on GET CURRENT NOLE is equivalent to
OPEN(NODE, " 'CURRENT NODE", (EXISTENCE)).

S.1.3 Package CAIS ATTRIBUTES

This package supports the definition and manipulation of attributes for
nodes and relationships. The name of an attribute follows the syntax of
an Ada identifier. The valus of each attribute is a list of the format
defined by the package CAIS LIST UTILITIES (see Section 5.4).
Upper/lower case distinctions "are significant within the walue of
attributes, but not within the attribute name.

Unless stated otherwise, the attributes predefined by the CAIS cannot be
created, deleted or modified by the user.

The operations defined for the manipulation of attributes identify the
node to which an attribute belongs either by pathname or open node
handle. They identify a relationship implicitly by the last path
elament of a pathname or explicitly by base node, key and relation name
identification.

Any syntactically illegal attribute name is treated as the name of a
non-existing attribute.

5.1.3.1 Creating node attributes

procedure CREATE NODE_ATTRIBUTE (NCDE: in NODE TYPE;
ATTRIBUTE: in ATTRIBUTE NAME;
VALUE: in LIST TYPE);

Puxpose:

This procedure creates an attribute, named by ATTRIBUTE of the node
identified by the open node harndle NOCE and sets its initial value
to VALUE.

Parameters:
NODE is an open node handle to a node to receive the new
attribute.
ATTRIBUTE is the name of the attribate.
VALUE is the initial value of the attribute.
Exceptions:

USE ERROR is raised if the node already has an attribute of

STATUS_ERROR is raised if the node handle NODE is not open.
INTENT VICLATION is raised if NOOE was not opened with an intent
establishing the right to append attributes.

SECURITY VICLATION is raised if the operation represents a
violation of mandatory access controls.

65

[
o+
&

Lt

-"f.'
‘n.‘;,.‘c_

¥

L e e e N R R T W T T N TV T r T T v T v wT W v ws s

E;‘ PROPOSED MIL~STD-CAIS
= 31 OCT 1984
o~ SECURITY_VICLATION is raised only if the conditions
for other exceptions are not present.
F Additional Interface:
procedure m_m_mm(m: in NAME STRING;
e ATTRIBUTE: in ATTRIBUTE NAME;
o VALUE: in LIST TYPE)
is
» NODE: NODE_TYPE;
o
» OPEN(NODE, NAME, (APPEND RELATIONSHIPS));
CREM'E_M)E_ATIRIEH‘E(ME. ATTRIBUTE, VALUE);
CLOSE (NODE) ;
exception
when others =>
o CLOSE (NODE) ;
end CREATE _NODE_ATTRIBUTE;
c
5.1.3.2 Creating path attributes
procedure QEA'I‘E_PA'IH_ATI‘RIHHE(M: in NODE TYPE;
KEY: in RELATIONSHIP KEY;
.- RELATION: in RELATION NAME :=
. DEFAULT RELATION:
. ATTRIBUTE: in ATTRIBUTE NAME;
VALUE: IN LIST TYPE):
Purpose:
This procedure creates an attribute named by ATTRIBUTE of a
relationship and set its initial value to VALUE. The relationship
is identified by the base node identified by the cpen node handle
. BASE, the relation name RELATION and the relationship key KEY.
Parameters:
BASE is an open node handle to the node fram which the
relationship emanates.
KEY is the relationship key of the affected relationship.
— RELATION is the relation nams of the affected relationship.
- ATTRIBUTE is the attribute name.
VALUE is the initial value of the attribute.
- Exceptionss
- NAME | is raised if the relationship identified by the

BASE/KEY/RELATION parameters does not exist.
USE ERROR is raised if the relationship already has an attribute
e of the given name or if the attribute name given is
syntactically illegal.
STATUS ERROR is raised if the node handle BASE is not open.
- INTENT VIOLATION is raised if BASE was not opened with an intent
(establishing the right to write relationships.

-
"
- . .
A f." “
e

AR AT e A e N T I A ALY A Y S Y LV VOV W v vy ’T

PROPOSED MIL-STD-CAILS =
31 OCT 1984 .
3
SECURITY VIOLATION is raised if the operation represents a o
viclation of mandatory access controls.
SECURITY_VICLATION is raised only if the conditions for -
other exceptions are not present. -
Additional Interface:
..I
\
procedure CREATE PATH ATTRIBUTE(NAME: in NAME_STRING; N
ATTRIBUTE: in ATTRIBUTE NAME;
VAIUE: in LIST TYPE) -
is 2
'BASE: NODE TYPE;
OPEN(BASE, BASE PATH(NAME), (WRITE RELATIONSHIPS)); ~
CREATE PATH A‘I'I'RIBU'I‘E(BASE. LAST W(M). LAST REA'I‘IQI(M), o
ATTRIBUTE, VALUE);:
CI@(BASE): R
exception a
when others => -
CLOSE(BASE) ;
raise; 2
end CREATE PATH ATTRIBUTE; =
=
5.1.3.3 Deleting node attributes)
procedure DELETE NODE_ATTRIBUTE (NODE: in NODE_TYPE; =
ATTRIBUTE: in ATTRIBUTE NAME). -
Purpoee -
This procedure deletes an attribute, named by ATTRIBUTE, of the node Y
identified by the open node handle NODE.
Parameters: =
NODE is an open node handle to a node whose attribute is to
be deleted.
ATTRIBUTE is the name of the attribute to be deleted.
N
. : N
USE ERROR is raised if the node does not have an attribute of the -
given name. o
STATUS_ERROR is raised if the node handle NODE is not open.)
INTENT VIOLATION is raised if NODE was not opened with an intent .
establishing the right to write attributes. S
SECURITY VIQLATION is raised if the operation represents a ~
vioclation of mandatory access controls.
SECURITY_VICLATION is raised only if the conditions for o
other exceptions are not present. ~d
Additional Interface: .
e
.o
procedure DELETE NODE_ATTRIBUTE (NAME: in NAME_STRING; -
67 =
3-95 __
o N B e N e T T e L IRl o

Lt ot I s v ot SO A SN et W 2 SN 0 40 T 0 B Ve WP R L Al pa ok e e

PROPOSED MIL~STD-CAIS
31 OCTr 1984

ATTRIBUTE: in ATTRIBUTE NAME;
VALUE: in LIST TYPE)
is
NODE: NODE_TYPE;

OPEN(NODE, NAME, (m_mmmsmps)):
mm_m_mmm(m. ATTRIBUTE, VALUE);
quss(m):
exception
when others =>
CLOSE(NODE) ;
raise;
end DELETE NODE ATTRIBUTE;

5.1.3.4 Deleting path attributes

procedure DELETE PATH ATTRIBUTE(BASE: in NODE_TYPE;
KEY: in RELATIONSHIP KEY:
RELATION: in RELATION NAME :=

DEFAULT RELATION;
ATTRIBUTE: in ATTRIBUTE NAME);
Purpose:
This procedure dJdeletes an attribute, named by ATTRIBUTE, of a
relationship identified by the base node BASE, the relation name

Parameters:
BASE is an open node handle to the node fram which the
relationship emanates.
KEY is the relationship key of the affected relationship.

RELATION is the relation name of the affected relationship.
ATTRIBUTE is the attribute name of hte attribute to be deleted.

Exceptions:

NAME ERROR is raised if the relationship identified by the
BASE/KEY/RELATION parameters does not exist.

USE ERROR is raised if the relationship does not have an
attribute of the given name.

STATUS ERROR is raised if the node handle BASE is not open.

INTENT VIOLATION is raised if BASE was not opened with an intent
establishing the right to write relationships.

SECURITY VIOLATION is raised if the operation represents a
vioclation of mandatory access controls.
SECURITY_VIOLATION is raised only if the conditions
for other exceptions are not present.

Additional Interface:
procedure DELETE PATH ATTRIBUTE(NAME: in NAME STRING;

ATTRIBUTE: in ATTRIBUTE NAME;
VALUE: in LIST TYPE)

68

..................
..................

T TR PO r VW vy

PROPOSED MIL~STD~CAIS

' 31 OCT 1984
4'
[.
™~ is
' aasz: NODE_TYPE;
. opm(nasa, BASE PATH(NAME), (WRITE RELATIONSHIPS));
- DELETE_PATH ATTRIBUTE(BASE, LAST KEY(NAME), LAST RELATION(NAME),
. ATTRIBUTE, VALUE);
vy CLOSE(BASE) ;
y when others =>
. CLOSE(BASE) ;
o raise;
o end DELETE PATH ATTRIBUTE;
5.1.3.5 Setting node attributes
- procedure SET_NCDE_ATTRIBUTE (NODE: in NODE_TYPE;
- ATTRIBUTE: in ATTRIBUTE NAME;
- VALUE: in LIST TYPE):
Purpose:
- This procedure sets the value of the node attribute named by
ATTRIBUTE to the value given by VAIUE. The node is identified by an
cpen node handle NODE.
Parameters:
NODE is an open node handle to a ncde whose attribute named
- by ATTRIBUTE is to be set.
ATTRIBUTE is the name of the attrilute.
VALLE is the new value of the attribute.
Exceptions:
USE ERROR is raised if the node has no attribute of the given
name.
STATUS ERFOR is raised if NODE is not an open node handle.
- INTENT VIOLATION is raised if NODE was not cpened with an intent
: establishing the right write attrilutes.

= SECURITY VICLATION is raised only if the conditions
: for other exceptions are not present.

Additional Interface:

procedure SET NODE_ATTRIBUTE(NAME: in NAME_STRING;
ATTRIBUTE: in ATTRIBUTE NAME;
. VALUE: in LIST TYPE)
.- is .5
- NCDE: NODE_TYPE: o
- OPEN(NCDE, NAME, (WRITE_ATTRIBUTES)); .
. SET_NODE_ATTRIBUTE(NODE, ATTRIBUTE, VALUE): o
~ CLOBE (NoDE) ; e
2 y
% 69 o
A)
.
. 3-97
ls, Y.
.\

,}.l) -'.\n'.- .) ‘o e ‘w IR AL S . T S B SV Lt et et et
A WO N S R AR AR A Y SO -.'..'.x"\'\"\'\':‘a

o5 |

| O
'l‘ L

B

LA

5.1.3.6 Setting path attributes

procedure SET_PATH ATTRIBUTE(BASE: in NODE _TYPE:
KEY: in RELATIONSHIP KEY;
RELATION: in RELATION NAME :=
DEFAULT RELATION;
ATTRIBUTE: in ATTRIBUTE NAME;
VALUE: in LIST TYPE);

This procedure sets a relationship attribute named by ATTRIBUTE to
ed

the value specifi by VAILUE. The relationship is identified
explicitly by the BASE node, the relation nams RELATION and the
relationship key KEY.
Parameters:
BASE is an open node e to the node fram vhich the
relationship emanates.
KEY is relationship key of the affected relationship.

BASE/KEY/RELATION parameters does not exist.
USE_ERROR is raised if the node does not have an attribute of the
given name.
STATUS_ERROR is raised if the node handle BASE is not open.
INTENT VIOLATION is raised if BASE was not opened with an intent
i the right to write relationships.
SECURITY VIOLATION is raised if the operation represents a
violation of mandatory access controls.
SECURITY_VIOLATION is raised only if the conditions for
other exceptions are not present.

Additional Interface:

procedure SET_PATH ATTRIBUTE(NAME: in NAME_STRING;
ATTRIBUTE: in ATTRIBUTE NAME;
VALUE: in LIST TYPE)

18
BASE: NODE_TYPE;
begin
OPEN(BASE, BASE PATH(NAME), (WRITE RELATIONSHIPS)):
SET_PATH ATTRIBUTE(BASE, LAST KEY(NAME), LAST RELATION(NAME),

L

)
PROPOSED MIL~STD-CAIS
31 OCT 1984

ATTRIBUTE, VALUE);
CLOSE(BASE) ;

vhen others =>
CLOSE(BASE) ;
raise;
end SET PATH ATTRIBUTE;

5.1.3.7 Getting node attributes
procedure GET NODE ATTRIBUTE (NCDE: in NODE_TYPE;
VALUE; in out LIST TYPE)

Purpose:
This procedure assigns the wvalue of the node attribute named by

ATTRIBUTE to the parameter VALUE. The node is identified by open
node handle NODE.

Parameters:

NODE is an open mnode handle to a node whose attribute
ATTRIBUTE is to be retrieved.

ATTRIBUTE is the name of the attribute.

VALUE is the result parameter containing the value of the
attribute.

Exceptions:

USE_ERROR is raised if the node has no attribute of name

ATTRIBUTE.

STATUS ERROR is raised if NODE is not an open node handle.
memwumﬁ&m“mt opened with an intent
establishing the right to read attributes.

Additional Interface:
procedure GET NODE ATTRIBUTE (NAME: in NAME STRING;

n

AL

W 5.1.3.8 Getting path attributes

n procedure GET_PATH ATTRIBUTE(BASE: in NODE_TYPE;
KEY: in RELATIONSHIP KEY;
RELATION: in RELATION NAME :=

Purpose:
- This procedure assigns the value of the relationship attribute named
: by ATTRIBUTE to the parameter VALUE. The relationship is identified
explicitly by the BASE node, the relation name RELATION and the
relationship key KEY.

- Parameters:
X BASE is an open node handle to the node fram which the
relationship emanates.

KEY is the relationship key of the accessed relationship.

RELATION is the relation name of the accessed relationship.

ATTRIBUTE is the name of the attribute.

VALUE is the result parameter containing the value of the
attribute.

Exceptions:

NAME ERROR is raised if the relationship identified by the
BASE/KEY/RELATION parameters does not exist.

USE ERROR is raised if the relationship does not have an
attribute of the given name.

STATUS_ERROR is raised if the node handle BASE is not Open.

INTENT VIOLATION is raised if BASE was not opened with an intent
establishing the right to read relationships.

Additional Interface:

procedure GE.'I‘_PA'IH_ATI‘RIHJ’I'E(M: in M_SI'RDB?
ATTRIBUTE: in ATTRIBUTE NAME:
is VALUE: in LISI'_'!'!PET
BASE: NODE_TYPE:

in

OPEN(BASE, BASE PATH(NAME), (READ RELATIONSHIPS)):

GET_PATH_ATTRIBUTE(BASE, LAST KEY(NAME), LAST RELATION(NAME),
ATTRIBUTE, VALUE):

CLOSE(BASE) ;
exception
when others =>
CLOSE(BASE) ;
raise;
end GET_PATH ATTRIBUTE;

3-100

R AT |--..-..-“4.’-
RN R AN |

Sty Wil aptisepil, Rt hpiloagilh SRt sedh AL A Sad S ACA i N T A AR A AR A A

: 3
PROPOSED MIL~STD=CAIS)

A 31 OCT 1984
. _
v .
[y
o 5.1.3.9 Attribute iteration types and subtypes i
U4
subtype ATTRIBUTE NAME is STRING; ;
. type ATTRIBUTE ITERATCR is private; i
4 subtype ATTRIBUTE PATTERN is STRING;
1 These types are used in the following interfaces for iteration over a
2 set of attributes of nodes or relationships. ATTRIBUTE NAME is a
4 subtype for the names of attributes. An ATTRIBUTE PATTERN has the same
: syntax as an ATTRIBUTE NAME, except that '?' will match any single R
™ character amd '*' will match any string of characters. o
. ATTRIBUTE ITERATOR is a private type assumed to contain the bookkeeping
. inforration necessary for the implementation of the MORE and GET_NEXT -
: 5.1.3.10 Creating iteratars over node attributes]
'_: procedure m_m_m(mmmm out ATTRIBUTE ITERATOR;)
NODE:: in NODE TYPE; i
by PATTERN: in ATTRIBUTE PATTERN:="*"); e
Purpose:
The procedure NODE ATTRIBUTE ITERATE returns in the parameter -
- ITERATOR an attribute iterator according to the semantic rules for K
.'-. attribute selm gim in m 50103. —t
'.:' Parameters: Ly
- ITERATOR is a result parameter containing the iterator to be
: constructed.
» NODE is an open node handle to a node owver whose -
1 attributes the iterator is to be constructed. E-:;
§j PATTERN is a pattern for attribute names as described in A
* m 50103 am 501.3.9.
Exceptions: =
- STATUS_ERROR is raised if NODE is not an open node handle.
» USE_ERROR is raised if the PATTERN is syntactically illegal. -
R INTENT VIOLATION is raised if NODE is not open with an intent s
. establishing the right to read attributes.
; Additional Interface: g
% procedure NODE_ATTRIBUTE ITERATE(ITERATOR:in out ATTRIBUTE ITERATOR; -
. NAME: in NAME_STRING; .
A PATTERN:. in ATTRIBUTE PATTERN:="*") L\
: is - A
% NODE: NODE_TYPE;
:j begin :
v OPEN(NCDE, NAME, (READ ATTRIBUTES)):
" NCDE A'I'I'RIBUI'B_I'I'ERA'I'ETITERA'IOR, NODE, PATTERN):
5 CLOSE(NCDE) ; e
. vhen others => -
A .
% s
X 73 -
, 3-151 b

Pt ket A iy Aa b-u 2t £-n fa san e 2 |
.

By using the pattern °‘*‘', it is possible to iterate through the
names of all attributes of a node.

5.1.3.11 Determining iteration status

function MORE (ITERATOR: in A'I'I‘RIBU'IE_I'I'ERA’IOR)
return BOOLEAN;

Purpose:

The function MORE returns true or false depending on whether all
attributes contained in the attribute iterator have been retrieved
with the procedure GET_NEXT.

Parameters:
ITERATOR is an attribute iterator previously constructed.
Exceptions:
USE_ERROR is raised if the ITERATOR has not been previously
set by the procedures NODE ATTRIBUTE ITERATE or
PATH ATTRIBUTE_ITERATE.

5.1.3.12 Getting the next node attribute

procedure GET NEXT(ITERATOR: in out ATTRIBUTE ITERATOR;
ATTRIBUTE: out ATTRIBUTE NAME;
VALUE : in out LIST TYPE);
Purpose:
The procedure GET NEXT returns, in its parameters ATTRIBUTE and
VALUE, both the name and the value of the next attribute in the

iterator.
Parameters:
ITERATOR is an attribute iterator previously constructed.
ATTRIBUTE is a result parameter containing the name of an
attribute.
VALUE is a result parameter containing the value of the
attribute named by ATTRIBUTE.
Exceptions:
A USE_ERROR is raised if the ITERATOR has not been previcusly
A set by the procedures NODE ATTRIBUTE ITERATE or
N PATH ATTRIBUTE ITERATE or if the iterator is
s L exhausted, i.e., MORE(ITERATOR)= false.

ERNIERME I SN A S A (i R I i e I s SR g M aeie U el i i i A A e L I SN g g e

5.1.3.13 Obtaining an iterator over relationship attributes

procedure PATH ATTRIBUTE ITERATE(ITERATOR: in out ATTRIBUTE ITERATOR;
BASE: in NODE_TYPE:
KEY: in RELATIONSHIP KEY:
RELATION: in RELATION NAME :=
DEFAULT RELATION;

PATTERN: in ATTRIBUTE PATTERN:="*");

Purpose:

This procedure is provided to odbtain an attribute iterator for

relationship attributes. The relationship is identified explicitly

by the BASE node, the relation name RELATION and the relationship

key KEY. The procedure returns an attribute iterator in ITERATOk
to the semantic rules for attribute selection applied to

the attributes of the identified relationship. This iterator can

then be processed by means of the MORE and GET NEXT interfaces.

Parameters:
ITERATOR is a result parameter containing the iterator to be
constructed.
NCDE is an cpen node handle to a node over whose attributes
the iterator is to be constructed.
PATTERN is a pattern for attribute names as described in
Section 5.1.3 and 5.1.3.9.
Exceptions:

NAME ERROR is raised if the relationship identified by the
BASE/KEY/RELATION parameters does not exist.
USE_ERROR is raised if the PATTERN is syntactically illeqal.
S'M'Usmlsmsedlfaaﬁ:mmtanopmmdeharﬂle.
mrerIOIATlesmsedlmemt opened with an intent

establishing the right to read relationships.
Additional Interface:
procedure PATH ATTRIBUTE ITERATE(ITERATOR: in out ATTRIBUTE ITERATOR;

NAME: in NAME_STRING;
' PATTERN: in ATTRIBUTE PATTERN:="*"):
18
_BASE: NODE_TYPE;
OPEN(BASE, BASE PATH(NAME), (WRITE RELATIONSHIPS));
PATH_ATTRIBUTE m(mma, BASE, LAST KEY(NAME),
LAST_RELATION(NAME), PATTERN):
CLOSE(BASE) ;
exception
when others =>
CLOSE(BASE) ;
raise;

end PATH ATTRIBUTE ITERATE;

75

pad \d T - B R TG T T —————"———" 3 bty e e e Ty i R Y ‘F_‘*':‘ .,
e e N N S N R T e - - T - T e e v

PROPOSED MIL~-STD=CAIS
31 OCT 1984
5.1.4 Package CAIS ACCESS CONTROL
This package provides primitives for manipulating discretionary access
control information for CAIS nodes. In addition, certain QAIS
subprograms declared elsewhere allow the specification of initial access
control information.
5.1.4.1 Types, subtypes, constants, and exceptions

subtype PRIVILEGE SPECIFICATICN is STRING;

A privilege specification is a character string in the syntax described
in Table V.

5.1.4.2 Setting access control
procedure SET ACCESS CONTROL(NODE: in NODE_TYPE;

ROLE NODE: in NODE TYPE:

GRANT: in PRIVILEGE_SPECIFICATION):
Purpose:
This procedure sets access control information for a given node. 1If
one does not exist, a secondary ACCESS relationship is created fram
the node specified by NODE to the node specified by ROLE NODE. If
necessary, the attribute GRANT is created on this relationship. The
value of the GRANT attribute is set to the proper form (see Table V)
of the privilege specification GRANT. The effect is to grant the
access specified by GRANT to processes that have adopted the role
ROLE NODE.

Parameters:
NODE is a node handle to the node whose access control
information is to be set.
ROLE NCDE is a node handle to the role.

GRANT is a privilege specification describing what
privileges are to be granted.

Exceptions:

USE_ERROR is raised if GRANT is not in valid syntax.

SMJSERK)RumLsedemIEo:‘mmismtcpm

INTENT VIOLATION is raised if NODE was not opened with intent
QONTROL.

SECURITY VIOLATION is raised if the operation represents a
violation of mandatory access controls.
SECURITY VIOLATION is raised only if the oconditions
for other exceptions are not present.

Additional Interface:

procedure SET ACCESS CONTROL (NAME: in NAME STRING;
mm:mmsrm:

76

PRI R S e S B A A e SV ac v oot i 2 S e

PROPOSED MIL~STD-CAILS
31 OCT 1984

GRANT: in PRIVILEGE SPECIFICATION);:
is
NODE, ROLE NODE: NODE_TYPE;
begin
OPEN(NODE, NAME(EXISTENCE)):
OPEN(ROLE NODE, ROLE NAME, (EXISTENCE)):
SET_ACCESS CONTROL(NODE, ROLE NODE, GRANT);
CLOSE (NCDE) ;
CLOSE (ROLE_NODE) ;
exception
when cothers =>
CLOSE(NODE) ;
CLOSE (ROLE_NODE) ;
raise;
end SET_ACCESS CONTROL;:

L . R AREL MU oy B e gt e

5.1.4.3 Indicating access mode “
function IS _GRANTED (OBJE?I‘ NODE: in NODE_TYPE: .
PRMM mMSI‘RDG)retmmm.EAN e
Purpose: wi
This function indicates whether or not a specific right to a node is
granted for the caller. If the caller has adopted a role that is "
the target of an access relationship emanating fram the cbject ncde
and if that relationship‘’s GRANT attribute allows the access right
specified by PRIVILEGE NAME, the function returns TRUE.
et
Parameters: —~—
OBJECT_NCDE is a node handle to the cbject node.
PRIVILEGE . NAME is a privilege name \}
Exceptions: '
USE_ERROR is raised if PRIVILEGE NAME is not in valid syntax. -
smTUSERmR LsmisedifmmIEmmtqam -
INTBJTVICIATICNis raised if NODE was not opened with an intent -
eaubh.shmg the right to read relationships.
SECURITY VIGLATION is raised if the operation represents a R
violation of mandatory access controls o
SECURITY VICLATION is raised only if the conditions
for other exceptions are not present. -
Additional Interface a
function IS GRANTED (OBJECT NAME: in NAME_STRING; b
P PRIVILBGE: in NAME S'I’RDG) return BOOLEAN Pl
O is
- OBJECT NODE: NODE_TYPE; o~
RESULT: BOOLEAN; -
A -
>
v OPEN(OBJECT_NODE, OBJECT NAME, (READ RELATIONSHIPS)); N
'3 RESULT := IS GRANTED(OBJECT NODE, PRIVILEGE):)
= CLOSE (OBJECT_NODE) ; -
::. o
> !
5 3-105
R O VA I S AN A AN R O A LIS SR LR e e T N LN 2Ty,

5.1.4.4 Adopting a group

g procedure ADOPT (ROLE NODE: in NODE_TYPE);

Purpose:

This procedure causes the calling process to adopt the grouwp
specified by the ROLE NODE. A relationship of the predefined
relation ADOPTED ROLE Tis created fram the calling process node to
current process to adopt the
process has already adopted must

s T

P

ﬁ' group, same other role the current
N be a potential member of the group to be adopted.
G Parameters:
'ﬁ ROLE_NODE is an open node handle to a group node.
f.,\ Exceptions:
3 {.;- USE_ERROR is raised if their is no adopted role of the current
S process that is a potential member of the growp
1 ROLE NODE.
A STATUS ERROR is raised if ROLE NODE is not an open node handle.
- IN’IMVIOlA‘.l‘I(N:.smsedif mm‘nsnot opened with an
intent establishing the right to read relationships.
; SECURITY VIOLATION is raised if the operation represents a
- violation of mandatory access controls.
- SECURITY VIOLATION is raised only if the conditions

5.1.5 Package CAIS STRUCTURAL NODES

Structural nodes are special nodes in the sense that they do not have
contents as the other nodes of the CAIS model do. Their purpose is
solely to be carriers of cammon information about other nodes related to
AR the structural node. Structural nodes are typically used to create
: conventional directories, configuration cbjects, etc.

S IR AN

v

The package CAIS STRUCTURAL NODES defines the primitive operations for
creating structural nodes.

| N

e R e T A T L N A R A e e R R e N T T T T e T o S N N S e T < =

A a2 f,

PROPOSED MIL~STD-CAIS -
31 OCT 1984
\ 5.1.5.1 Creating structural nodes I
procedure CREATE NODE (NODE: in out NODE TYPE; -
BASE: in NODE_TYPE; ,
KEY: in RELATIONSHIP KEY := S
LATEST KEY;
RELATION:in RELATION NAME := S
DEFAIILT RELATION; e
ATTRIBUTES: in LIST TYPE := EMPTY LIST;
ACCESS CONTROL: in FORM_STRING := e -
' LEVEL: in FORM_STRING = Fe
Purpose: o
This procedure creates a structural node and installs the primary
relationship to it. The relation name and key of the primary >
relationship to the node and the base node fram which it emanates .
are given by the parameters RELATION, KEY, and BASE. An open node
: handle to the newly created node with WRITE intent is returned.

g

1 iTe
K

The ATTRIBUTES parameter defines and provides initjal values for

attributes of the node (for the use of values of type LIST TYPE, see

v Section 5.4 QIS_LISI‘_UI‘ILITIES). The ACCESS CONTROL parameter
specifies initial access control information to be established for
the created ncde.

L3N]
o

-
‘s

.
[4

The LEVEL parameter specifies the security level at which the node
is to be created.

rr
k']

Parameters: -
NODE is a node handle, initially closed, to be opened to the -
B newly created node.
. BASE is an open node handle to the node fram which the D
5 primary relationship to the new node is to emanate. ‘.
. KEY is the relationship key of the primary relationship to ’
be created. o~
RELATION is the relation name of the primary relationship to be -
created. =
ATTRIBUTES is initial values for attributes of the newly created .
ACCESS_CONTROL is the initial access control information associated v
with the created node.
LEVEL is the classification label for the created node. "
3 Exceptions: v
: NAME ERROR is raised if a node already exists for the node
- identification given, if the node identification is o
- illegal, or if any group node specified in the given

ACCESS CONTRCL parameter is unobtainable.

USE_ERROR is raised if the ACCESS (INTROL or LEVEL parameters do '~
doss not adhere to the required syntax cr if the
ATTRIBUTES paramster contains references to predefined -
attributes not modifiable by the user. .

STATUS ERROR is raised if BASE is not an open node handle or if Y
NCDE is an open node handle prior to the call. -

79
3-107
s

N I SO A B S S B SO N TR T N M N R R i S S A K TR

B A A a e s e

rs

PROPOSED MIL~STD-CAIS
31 OCT 1984

violation of mndatcn:y access controls.
SECURITY_VIOLATION is raised only if the conditions for

other exceptions are not present.
Additional Interfaces:

procedure CREATE NODE (NODE: in out NODE_TYPE:
NAME:: in NAME _STRING;
ATTRIBUTES: in LIST TYPE := EMPTY LIST:
ACCESS OONTROL: in FORM_STRING =
LEVEL: in FORM_STRING T= "),
18
BASE: M]DE__TYPE:

OPEN(BASE, BASE PATH(NAME), (APPEND RELATIONSHIPS)):
CREATE m(m, BASE, LAST m(m). LAST RELATION(NAME),
ATTRIBUTES, ACCESS_CONTROL, LEVEL);
CLOSE(BASE) ;
exception
when others =>
CLOSE (NODE) ;
C1LOSE(BASE) ;
end CREATE_NCDE;

procedure CREATE NODE(BASE: in NODE TYPE;
KEY: in REI'.ATIQ&IIP KEY :=LATEST KEY;
RELATION:in RELATION ! NAME :=
DEFAULT RELATION;
ATTRIBUTES: in LIST 1 TYPE := EMPTY _LIST;
ACCESS CONTROL: in FORM_STRING : =
' LEVEL:™ in FORM_STRING t= "");
is
NODE: NODE_TYPE;
begin
CREATE_NODE (NODE, KEY , RELATION, ATTRIBUTES, ACCESS_CONTROL, LEVEL) ;
CLOSE(NCDE) ;
end CREATE NODE;

procedure CREATE NODE(NAME: in NAME_STRING:
ATTRIBUTES: in LIST TYPE := EMPTY LIST;
ACCESS CONTROL: in ¢
_ LEVEL: in FORM_STRING = "“);
18
NODE: NODE_TYPE;
begin
cm-:m:z mor;:(m. NAME, ATTRIBUTES, ACCESS CONTROL, LEVEL):
CLOSE (NODE) ;
end CREATE NODE;

Notes:

Use of the sequence of a CREATE NODE call followed by a call on OPEN
for the created node, using the node identification of the created
node, cannot guarantee that the node just created is opened, since
relationships, and therefore the node identification, may have
changed since the CREATE NODE call.

7

%%

A |

[LRENER
IO

.y
oA

s MO
3

This section describes the seamantics of the execution of Ada
programs as

represented by CAIS processes and the facilities provided by the
CAIS for initiating and controlling processes.

The major events in a process's life are:

a. Initiation

b. Running, which may include suspension or resumption
¢. Termination or abortion

This section of the CAIS defines facilities to control amd
coordinate the initiation, suspension, resumption, and termination or
abortion of processes.

A process is said to be "terminated" when the subprogram which is
its main program (in the sense of [LRM] 10.1) has terminated (in the
sense of [LRM] 9.4). See also the notes in [LRM] 9.4. Thus,
termination of a process takes place when the main program has been
campleted and all tasks dependent on the main program have terminated.

A process may be “aborted” either by itself or by another process.
Aborting a process can be considered pre-amptive termination and may be
initiated by the process itself or by another process with sufficient
access rights.

The following rules apply to process ncdes for which the process
has teminated or aborted:

a. The process node ramins in existence until explicitly
deleted.

b. Any processes in the process tree emnating from the
terminated/aborted process have texminated or aborted.

T™wo mechanisms for a pxocess to initiate another process are
provided:

a. Invoke - the procedure INVOKE PROCESS does not return
control to the calling task until the initiated process has
terminated or aborted. Exscution of the calling task is
blocked until termination or abortion of the initiated
process, but other tasks in the initiating process execute
in parallel with the initiated process and its tasks.
Exscution of the initiating task is synchronized with the
initiated process, which has no implicit effect on other
tasks of the initiating process. This kind of process
initiation is analogous to calling the specified program as
a procedure.

82

b. Spawn - the procedure SPAWN PROCESS returns after
initiating the specified program. The initiating process
and the initiated process run in parallel, and, within each
of these, their tasks execute in parallel. The processes
run asynchronously, except as they are synchronized by the
use of other CAIS facilities. This kind of process
initiation is analogous to activation of the specified

program as a task.

Every process node has three predefined attributes: RESULTS LIST, which
can be used to store user-defined strings giving intermediate results of
the process; PARAMETER LIST, which contains the parameters with which
the process was called; amamrsmms. which gives the current
status of the process. In addition, every process node has several
predefined attributes which provide information for standardized
debugging and performance msasurement for processes within the CAIS
implementation. One of these predefined attributes has an
implementation-independent value. This attribute is HANDLES OPEN, which

process
aborted. IO INITS gives the mmber of I/0 wunits used. SIZE gives a
measure of the size of the process.

wmram.amwmm smmmm,mmm ard

ERFOR are relationships established at job creation to the
default Input, cutput and error files, respectively. The STANDARD INPUT
and STANDARD OUTPUT files conform to the semantics given for these in
(LAM] 14.3.20 CURRENT _INFUT, CURRENT OUTPUT and CURRENT ERFOR are
relationships established wamtoaltmtivafilestobeused
as the default input, output and errar files, respectively.
CURRENT_INPUT and CURRENT OUTPUT also conform to the semantics of [LRM)
14.3.2. Interfaces are in the CAIS Input/Output packages

*(Section 5.3) to read these predefined relationships and to change the
value of CURRENT INPUT, CURRENT OUTPUT, and CURRENT ERROR.

=
:

31 OCT 1984

5.2.1 Package CAIS PROCESS DEFINITIONS

This package defines the types and exceptions associated with
process nodes.

type PROCESS_STATUS is
(m.m.m.mn
The PROCESS STATUS is the state of a process. Table VII indicates the
states and the events which will cause transition fran one state to
another.

3-112

e et T AT AT AT T T T T b e e e LN
. '::ﬁ.nh'ﬁ:;m;ﬁ'!i‘g‘:\!;\‘. ‘.\-}pt‘!.;d

. PROPOSED MIL~STD-CAIS
- 31 OCT 1984

X TARLE VII. Process state transition table
state: non_existent | READY | SUSPENDED | ABORIED | TERMINATED]
X event
. process READY N/A N/A N/A N/A
A Creation
‘

N/A N/A N/A

5

of main N/A

X ABORT N/A ABOR-
" PROCESS TED
sus-

SUSPEND N/A
PROCESS PENDED

RESIME N/A — READY _— —

- N/A: marks events that are not applicable to the state specified.
- -—3: marks events that have no effect on the state.

9 upper case: states which are values of the enumeration type
PROCESS STATUS (e.g., READY) and for events which
are caused by calling CAIS interfaces (e.g.,
ABORT_PROCESS) .

lower case: other states (i.e., non-existent) and other events
(e.g., termination of the main program).

5 85
- ‘.
" T
v ':\
v -
* e
Te
i -
. o
.
3-113 -

LI R T ST TOE LAY SR ML SRR SR Wl T AT BRI] SN M, Nt L e PR L L TS S L e e te e % "m Tm ™ L
» e te Lt e Y e et e L - SR . 0 - RIRFCIRCLAC TR '.-"-"-4‘# PR I

DI N
O AU

.t
L N N

ez

PROPOSED MIL~STD-CAIS
31 oCTr 1984

When a process has temminated or aborted, the final status,
recorded in the predefined process node attribute CURRENT STATUS, will
persist as long as the process node exists. Any open node handles
amnating fram a process are closed after the process is terminated or
aborted.

% Y

The PROCESS STATUS of a process will be returned to any task
mi&mﬂutm&uﬁmma&tﬁmdﬂummﬂum
is terminated or aborted. If the process has already been terminated or
aborted at the time a call to AWAIT PROCESS COMPLETION is made, then the
msmvsuimudiaulyavailable.

PROCESS STATUS may also be examined by the CAIS procedures
smwpmammmms

remTy

ROOT PROCESS : constant NAME STRING := “'CURRENT JOB";

: constant NAME STRING := *‘CURRENT | "e

CURRENT INFUT : constant NAME STRING := "‘'CURRENT INPUT":

CURRENT QUTPUT: constant NAME STRING := *‘CURRENT OUTPUT";

. CURRENT ERFOR : constant NAME STRING := "°‘CURRENT ERROR";

o CURRENT PROCESS:STRING renames CAIS NODE_DEFINITIONS.CURRENT PROCESS;

--,,
.l
gl
IIIE
LU o
[

ROOT_PROCESS and CURRENT PROCESS are two strings defined to represent,
rewﬂwly,ﬂnmtmofﬂuamjobammm
process.

Table VIII presents an overview of interfaces to change the status,
review results, or determine predefined attribute values in a process.

TABLE VIII. Process Interfaces

Changing the status These three procedures change the process status

of a process of a process. Because of timing circumstances in
a distributed envirorment, a change to the
process status may not take effect immediately.
In particular, a process may terminate before
ABORT_PROCESS or SUSPEND PROCESS is enacted.

procedure ABORT PROCES
procedure SUSPEND PROCESS
procedure RESUME PROCESS

AT]

-
o &
R |

-
O
.Y

R

Determining the valus These procedures read the predefined attributes
of a predefined on process nodes.
attribute

—r
Y v

function HANDLES OPEN
function 10 WNITS
function START TIME
function FINISH TIME

-~
¢
.

—y ey

A S i Agh Sl 0 Sl A jinie e s

PROPOSED MIL~STD=CAIS
31 oCTr 1984

function MACHINE TIME

Results from tasks These two procedures provide the techniques

in a process for a process to examine and modify a
results list. The results list is returned
to a task which named that process in a call
to INVOKE PROCESS or AWAIT PROCESS COMPLETION.

The results list can be examined before or
after process termination or abortion by any
process with the appropriate access rights.

procedure WRITE RESULTS
procedure APPEND RESULTS

5.2.2 Package CAIS PROCESS CONTRCL

5.2.2.1 Types, subtypes, constants, and exceptions

subtype LIST TYPE is CAIS_LIST UTILITIES.LIST TYPE;

subtype RESULTS LIST is CAIS LIST UTILITIES.LIST TYPE;

subtype RESULTS STRING is STRING;

subtype PARAMETER LIST is CAIS_LIST UTILITIES.LIST TYPE;
subtype NAME STRING is CAIS_NODE DEFINITIONS.NAME STRING;
subtype RELATION NAME is CAIS_NODE DEFINITIONS.RELATION NAME;
subtype RELATIONSHIP KEY ismsmmmsmmmm-
subtype NODE_TYPE is CAIS NODE_DEFINITIONS.NODE TYPE:

subtype PROCESS_STATUS is CAIS_PROCESS_DEFINITIONS.PROCESS_STATUS;

EMPTY LIST: oconstant LIST TYPE renames
CAIS LIST UTILITIES.EMPTY LIST;

IATEST KEY: constant RELATIONSHIP KEY renames
CAIS NODE DEFINITIONS.LATEST KEY;

DEFNULT RELATION: constant RELATION NAME renames
msmmma«sm'rmmwo

NAME FRROR: exception renames CAIS NODE DEFINITIONS.NAME ERROR;
USE_ERROR: exception renames CAIS NODE DEFINITIONS.USE ERROR;
INTENT VICLATION: exception renames

CAIS_NODE DEFINITIONS.INTENT VIOLATION:

ACCESS VIOLATION: exception renames
CAIS_NODE_DEFINITIONS.ACCESS_VICLATION:

87

33

3

S
e

.

.l‘

gR |

-

N
¢

[

-~
a7

............................

SBECURITY_VIOLATION: exception renames
CAIS_NODE_DEFINITIONS.SECURITY VIOLATION;

is raised whenever an attempt is made to access a
node via a pathname or node handle while the node
does not exist, is uncbtainable, discretionary
access controls faor knowledge of existence of a node
are violated, or mandatory access controls for read
cperations are violated.

NAME_ERROR

USE_ERROR is raised whenever a restriction on the use of an

interface is violated.

INTENT VIOLATION is raised whenever an operation is attempted on an
open node handle which is in violation of the access
intent specified when the node handle was opened.

ACCESS VIOLATION is raised whenever an operation is attempted which
violates access right oonstraints other than
knowledge of existence of the node.

SECURITY_VIOLATION is raised whenever an ocperation is attempted which
violates mandatory access controls.

5.2.2.2 Spawning a process
procedure SPAWN PROCESS

(NODE: in out NODE_TYPE;

FILE_NODE: in NODE_TYPE;

INPUT_PARAMETERS: in PARAMETER LIST;

KEY: in RELATIONSHIP KEY := LATEST KEY;
RELATION: in RELATION NAME := DEFAULT RELATION;
ACCESS CONTROL: in FORM _STRING := *";

LEVEL: in FORM_STRING = "*;

FORM: in LIST TYPE := EMPTY_LIST;
INPUT_FILE: in NAME STRING := CURRENT INPUT:
QUTPUT FILE: in NAME_STRING := CURRENT OUTPUT;
ERROR FILE: in NAME_STRING := CURRENT ERROR;
ENVIRONMENT NODE: in NAME STRING := CURRENT NODE):

Purpose

AT VLU WTWTTNY Y bl iy MR e, e AR fan R e b

This procedure creates a new process node whose contents represent
the execution of the program contained in the specified file node.
SPANN_PROCESS accepts a list of parameters and makes it available to
the new process via the procedure GET PARAMETERS.
to the calling task after the new node is created. The process node

ining the calling task must have execution rights for the file

|

node. created process node has secondary relationships to the

The
input, output, and error files. An open node handle on the new node
th an intent establishing all access rights.

is returmed,

TF TR 7o 7 TRIS Wy

2 T a Wm Tl AW G RORRT I aya i Ay L o " N " N w
AR A U N 2"l Mg L S . Rl Pl S RO SN S A SN A UMCI A A S 2. Y0 SR S SR ot e Sam it SR AR e @t e A S

PROPOSED MIL~STD-CAIS

o 31 OCT 1984
~
]

3 The ACCESS CONTROL parameter specifies the initial access control
information to be established for the created node. The current
user must have all access rights to the created node.

:-; The LEVEL paramster specifies the security level at which the node

3 is to be created.
w
) Parameters:
NCDE is a node handle returned on the newly created
. process node.
. FILE_NODE is a node handle on the file node containing
N the executable image whose execution will be
represented by the new process.
. INPUT_PARAMETERS is a list containing process parameter information.
3 The list is oonstructed and parsed using the
. tools provided in CAIS LIST UTILITIES(Section 5.4).
\ INPUT PARAMETERS is stored in a predefined
"o attribute PARAMETER LIST of the new node.
= KEY is the relationship key of the primary
e relationship froam the current process node to the
- new process node. The default is supplied by the
- mechanism of interpreting the LATEST KEY constant.
-] RELATION is the name of the primary relation fram the
>3 current process to the new node. The default is
o DEFAULT RELATICN.
X
o AXESS QONTROL is a string defining the initial access control
15 information associated with the created node. The
carrent user mst have all access rights to the
3 created node.
.(- LEVEL is a string defining the classification label for
the created node.
~ FORM is a 1list which can be used to set attributes
- in the new node. It ocould be used by an
- implementation to establish allocation of
- resources.
.
el INPUT_FILE,
. OUTPUT_FILE, and
ERFOR_FILE are path names t0 file nodes for the new process
node.

ENVIRONMENT NODE is the node the new process will have as its
initial current node. The default value is
CURRENT NODE of the initiating process. ::%

AR

Exceptions:

e lie P e m Ve B ® PR e e

oA
‘.

Te, v

% B

‘

-

-
I A

31 OCT 1984

NAME ERROR is raised if the node indicated by FILE NODE is
inaccessible or uncbtainable or if a node already
exists for the relationship specified by KEY and
RELATION.

USE_ERROR is raised if it can determined that the node
indicated by FILE NODE does not oontain an
executable image.

LOCK_ERROR is raised if the node designated by FILE NOLE is

locked against execution.

INTENT VIOLATION is raised if the node designated by FILE NODE was
not opened with an intent establishing the right
tO execute contents.

Notes:

L

R
[- R

—
T
e
PR

-

>
v - .
PR

SPAWN_PROCESS does not return results or process status. If
coordination between any task and the new process is desired,
AWAIT PROCESS COMPLETION or the techniques provided in CAIS
Input/Output ~*(Section 5.3) must be used. When the parent process
terminates or aborts, the child process will be aborted.

5.2.2.3 Awaiting termmination or abortion of another process
procedure AWAIT PROCESS CQOMPLETION

(NODE: in NODE_TYPE;
RESULTS_RETURNED: in out RESULTS LIST;

STATUS: out PROCESS STATUS;

TIME LIMIT: in DURATION := DURATION'LAST);

Purpose

This procedure suspends the calling task and waits for the process
identified by NODE to terminate or abort. The calling task is
suspended until the identified process terminates or aborts or until
the time limit is exceeded.

AWAIT PROCESS COMPLETION returns the results list and process
cawpletion status to the calling task, even if the process has
already terminated or aborted when the call is made, so long as the
process node exists.

Parameters:
NODE is an open node handle for the process to be awaited.
RESULTS_RETURNED is a list of results, which are represented by
strings, from the process. The individual results may

be extracted fram the list using the tools provided
in CAIS LIST UTILITIES.

R OB e APt I AC R AR CR SIS S M S A S i " ke IBLARPE e B i e — —
- Cew -t . R A K R A . A . A . . I A P i e P P ptien

LA

PROPOSED MIL~STD-CAILS
31 OCT 1984

STATUS gives the process status of the process. It <o
termination or abortion of the identified process can
be reported within the specified time limit, STATUS =
will have the value ABORTED or TERMINATED. If the
process does not terminate or abort within the time
limit, STATUS will have the value READY or SUSPENDED.

et et
o

TIME LIMIT is the limit on the time that the calling task will
be suspended awaiting the process. When the limit is
exceeded the calling task resumes execution. The
default is the implementation-dependent maximum value
for DURATICN.

RS

Exceptions:
NAME ERROR is raised if the identified node is inaccessible or
uncbtainable.

LOCK_ERROR is raised if the identified node is locked against
reading attributes.

N Yt
P

INTENT VIGLATION is raised if the designated process node was not
opened with an intent establishing the right to
read attributes.

SECURITY VIOLATION is raised if the attempt to access the
identified node represents a violation of mandatory
access controls. SECURITY VIOLATION is raised only
if the conditions for the other exceptions are not -
satisfied. -~

5.2.2.4 Invoking a new process

procedure INVOKE PROCESS
(FILE_NODE:

INPUT PARAMETERS:
RESULTS RETURNED:
STATUS:
KEY:
RELATION:
ACCESS CONTROL:
LEVEL:
FORM:
INPUT FILE:
OUTPUT_FILE:
ERROR FILE:
ENVIRONMENT NODE:
TIME_LIMIT:

NODE_TYPE;
PARAMETER LIST; _
RESULTS_LIST; -
PROCESS_STATUS; b
RELATIONSHIP_KEY := LATEST KEY;:

RELATION NAME:= DEFAULT RELATICN; -
FORM STRING := "% '
FORM_STRING := ““;

LIST TYPE := EMPTY LIST:
NAME STRING := CURRENT INPUT;
NAME STRING :=CURRENT OUTPUT; .~
NAME_STRING := CURRENT ERROR:

NAME_STRING := CURRENT NODE; N
DURATION := DURATION'LAST;) =

a8

EEEEEEEEEE EEE

Purpose: -
This procedure provides the functionality of a call to SPAWN PROCESS e

followed by a call to AWAIT PROCESS COMPLETION, as an indivisible -

91)

ey

mmmcatesamwpmssmdemmWesentthe
execution of the program contained in the specified file node.
INVOKE_PROCESS accepts a list of parameters and makes it available to
ﬂxenavprocessvnﬂ:epmcedureGErPARAmmPs If termination or
abortion of the identified process can be reported within the
specified time limit, control is returned with the process status.
Othexwise control is returned when the specified time limit is
exceeded with a status of READY or SUSPENDED. The process node
containing the calling task must have execution rights for the file
node. The created process node has secondary relationships to the

input, output, and error files.

The ACCESS CONTROL parameter specifies the initial access control
information to be established for the created node, as described in
*(Section 5.1.4). The current user must have all access rights to the
created node. The LEVEL parameter specifies the security level

at which the node is to be created, as described in *(Section 5.1.4).

Parameters:

FILE NODE is an open node handle on the file node containing
the executable image whose execution will be
represented by the new process.

INPUT_PARAMETERS is a list containing process pamneter information.
The list is constructed and parsed using the list
handling tools of CAIS LIST UTILITIES. INPUT-
PARAMETER is stored in the predefined attribute
PARAMETER LIST of the new node.

RESULTS RETURNED is a list of results which are represnted by
strings fram the new process. The individual
results may be extracted from the list using the
tools of CAIS_LIST UTILITIES.

STATUS gives the process status of the process. If
termination or abortion of the identified process
can be reported within the specified time limit,
STATUS will have the value ABORTED or TERMINATED.
If the process does not terminate or abort within
the time limit, STATUS will have the value
READY or SUSPENDED.

KEY is the relationship key of the primary relationship
fron the current process node to the new process
node. The default is supplied by the LATEST KEY
function.

RELATION is the name of the primary relation fram the
current process node to the new node. The default
is DEFAULT RELATION.

92

VAt a¥a® o, o e e e e

ACCESS_CONTROL

FORM

INPUT FILE,

—

ERROR FILE

e 2

Exceptions:
NAME ERROR

USE_ERROR

LOCK_ERROR

Notes:

'L

LR AT AR i e T A it i e s iR T i T T e T L

PROPOSED MIL~STD-CAIS
31 OCT 1984

is a string defining the initial access control
information associated with the created node. The
current user must have all access rights to the
created node.

is a string defining the classification label for
the created node.

is a list which can be used to set attributes of
of the new node. It could be used by an
implementation to establish allocation of resources.

OQUTPUT FILE, and

are path names to file nodes for the new process
node.

ENVIRONMENT NODE is the node the new process will have as its

current node. The default is CURRENT NODE of the
invoking process.

is the limit on the time that the calling task will
be suspended awaiting the new process. When the
limit is exceeded, the calling task resumes
execution. The default is the implementation-
dependent maximum value for DURATION.

is raised if the node indicated by FILE NODE is
inaccessible or unobtainable or if a node already
exists for the relationship specified by KEY and
RELATION.

is raised if it can be determined that the node
indicated by FILE NODE does not contain an
executable image.

is raised if the node designated by FILE NODE is
locked against execution.

INTENT VIOLATION is raised if the node designated by FILE NODE was

not opened with an intent establishing the right
to execute contents,

Both ocontrol and data (results and status) are returned to the
calling task upon termination or abortion of the invoked process.

23

T ~r e

P

3-121 =

5

Y S S AL T G A YA

C_LATY T N A Y gy

) PROPOSED MIL~STD-CAIS
&-_; 31 OCTr 19684
g 5.2.2.5 Creating a new job
: CREATE_JOB
- (FILE NOOE: in NODE_TYPE;
v o INPUT PARAMETERS: in PARAMETER _LIST;
¥ KEY: in RELATIONSHIP KEY s= LATEST KEY;
ACCESS CONTROL: in FORM_STRING = "";
F LEVEL: in FORM_STRING 3= "";
L FORM: in LIST TYPE = EMPTY LIST:
LR INPUT_FILE: in NAME STRING = CURRENT INPUT;
OUTPUT FILE: in NAME_STRING 3= CURRENT OUTPUT;
L ERROR_FILE: in NAME STRING := CURRENT ERROR;
L ENVIRGMENT NOCE: in NAME_STRING := CURRENT USER);
. Purpose:
o This Creates a new root process node whose contents
& represent the execution of the program contained in the specified
file node. CREATE OB establishes the USER, ROLE, and DEVICE
. relationships as described in *(Section 4), General .
-, CREATE JOB accepts a list of paramsters and makes it available to
| = the new process via the procedure GET PARAMETERS. Control returns
v to the calling task after the new job is created. The process node
- containing the calling task must have execution rights for the file
:F node and append relationship rights to CURRENT USER. The new job
’ has secondary relationships to the input, output, and errcr files.
A new primary JOB relationship is established fram CURRENT USER to
i the new job.
- The ACCESS CONTROL specifies the initial access control

SN S Y AN

' is to be created.
R Parameters:
. FILE NCDE is an open node on the file node containing

L Key is the relationship key of the primary JOB
wh relationship fram the current user node to the new
' node. The default is supplied by the

4 LATEST KEY function.

S ACCESS CONTROL is a string defining the initial access control

: information associated with the created node. The

,t Current user nmust have all access rights to the

. "

'

R s A G T S S R T T G L A T N AT -1

.;.‘T.’,-T."'."n‘. ORI S A A ALY S S X ST SR A LIS 003N e iy Tt Jeon 1 vy ety bk il -1y i de -B0a"in 54 .20 B She low Aie b 5w a0 g g T TRRIBTEANY
')' 5
! &
PROPOSED MIL~STD-CAIS o~
31 OCT 1984 ot
created node. ;:
. LEVEL is a string defining the classification label for
) the created node. =
A} biaY
) FORM is a list which can be used to set attributes e
: of the new node. It could be used by an
implementation to establish allocation of -
, rescurces. FA
INPUT_FILE,
' OUTPUT FILE, and =
ERROR FILE are path names to file nodes for the new process i
node.
N ENVIRONMENT NODE is the node the new process will have as its X
N initial current node. The default value is A,
. CURRENT USER of the current process.
) Exceptions: 3
- NAME ERFOR is raised if the node indicated by FILE NOUE is
inaccessible ar uncbtainable or if a node already
exists for the relationship specified by KEY and 3
RELATION. P
. . ﬁ
USE_ERROR is raised if it can determined that the node -
. indicated by FILE NOCE does not contain an
- executable image. f
> X
5 LOCK_ERROR is raised if the node designated by FILE NODE is 1
locked against execution.
-
INTENT VIOLATON is raised if the node designated by FILE NODE was ~
not cpened with an intent establishing the right w3
to exacute contents.
ACCESS VIOLATION is raised if the current process does not have :j:
sufficient discretionary access rights to cpen the h
current user node with APPEND RELATIONSHIPS intent.
ACCESS_VICLATION is raised only if the conditions B
for NAME_ERRCR are not satisfied. i
SECURITY VIGATION is raised if the attempt to obtain access to
CURRENT USER or the file node represents a N
vioclation of mandatory access oontrols for the N
. QAIS. SBCURITY VIGLATION is raised only if the
k. qxﬂiﬁmfotnishgmoﬂnrexoaptimmmt -
- “mfido v._:'
2 Notes: |
. CREATE JOB does not return results or process status to the calling a
b b)
' 95 -
v N
‘ o
¥ 3-123
< ' a
foed
.-‘ . L, Sl '.' " ' ‘ ‘. o ':‘ "‘ .‘}.'.'. N . (3 '.'.‘(\.(-:’:'-"'-‘u"";'. '.;_-'",-_-_'.:.',-_\.-".-_-s,-.‘.:‘.{-...:‘_- iy ."h C. ; ..: - s ' %_Q}' ‘\d

. N . - v . - ~ i I
[QPOMICSL SO I CIMC I I FP(TNa M ma i i A A o it Rl S T fle Minhtg 3 he - G 5 ahnp-Blcs Y “BW A Jhan b an A SN s - G B e el s ey i eh e ol

PROPOSED MIL~STD-CAIS
"~ 31 OCT 1984
program unit. If coordination between any program unit and the new
2 process is desired, AWAIT PROCESS COMPLETION or the techniques
provided in CAIS Input/Output *(Section 5.3) must be used.
""_'-:' The relation nams for the primary relationship to the new node is
) JOB.
- Appending resul
‘:.,'. 5.20206 ts
E procedure APPEND RESULTS(RESULTS: in RESULTS STRING):
L,
b Purpose:
I“ This procedure adds its specified results parameter to the list of
. results fram other calls to APPEND RESULTS in the current process.
’ The procedure appends results to the list in the order in which they
v are received. Upon termination or abortion of the current process,
1 the results list is returned to any task which named this process in
3 a call to AWAIT PROCESS COMPLETION or INVOKE _PROCESS.
3
o Parameters:
RESULTS is a string t© be stored in the RESULTS_LIST
; attribute of ths current node amd
P ultimately returned to the awaiting or invoking
r task.
Exceptions:
. None .
' Notes:
‘: Until the process node is deleted or the results are overwritten,
. the results are stored in a results list which is th evalus of the

5.2.2.7 Ovexwriting results
procedure WRITE RESULTS (RESULTS : in RESULTS STRING);

Purpose:

This procedure replaces the caurent list of results with the
A specified results.

Parameters:
. RESULTS is a string to be stored in the RESULTS LIST and
re ultimately returned to the amwaiting or inwking
. Exceptions:
v None.
>

96
i 3-124
'l
=
L e e e e e e e T T T T

e R Y N N T N T W T T

PROPOSED MIL~STD-CAIS
31 OCT 19%4

o

5.2.2.8 Getting results fram a process

procedure GET _RESULTS (NODE: in NODE_TYPE;
RESULTS: in cut RESULTS LIST;
STATUS: out PROCESS_STATUS); !

Pt

Purpose:
This procedure reads the attributes RESULTS LIST and CURRENT STATUS

’ associated with a process node. The process need not have)
- terminated or aborted. The empty list is returned in RESULTS if

- mmmormmmmmtbemcanedmmm
contained in NODE.

Parameters:
NCDE is an open node handle cn a process node.

T
" r e
s 2

« ¥
A .'."T 0
e N
v o

RESULTS is a list resulting fran calls made by program 5
mits in the process nxde to the

< WRITE_RESULTS and APPEND RESULTS. The individual

results may be extracted from the list using the !

h tools of CAIS LIST UTILITIES *(Section 5.4).

2 STATUS is the process status of the process. 3
- Exceptions:
- NAME ERROR is raised if the node identified by MNIDE is

— inaccessible or unobtainable or is not a process

- node.

- LOCK_ERROR is raised if the node identified by NODE is locked

N against reading attributes. t
% INTENT VIGLATION is raised if the identified process node was not -
' opened with an intent establishing the right to

- read attributes. -
- SPCURTTY VICLATION is raised if the attempt to cbtain access to the

< node identified by NODE represents a violation of -
- mandatory access controls for the CAIS. SECURITY &

VILATION is raised only if the oconditions for
raising the other exceptions are not satisfied.

»
..

.:; Additional Interfaces:

o procedure GET RESULTS (NODE: in NCDE_TYPE; A

. RESULTS: in out RESULTS_LIST) X
STATUS: PROCESS STATUS:

.:- win x

. GET RESULTS(NODE, RESULTS, STATUS); .

end GET_RESULTS;)

- procedure GET_RESULTS (NAME: in NAME_STRING: v

."

. 97

: ’

.. 3-125

PNl I N

PR N

e Py B My N P Pt o

/"
¢
.
. v",:o
Y f.
N
f
&
>
.. -
RSLH%

-'-)'--.'\

31 OCT 1964

RESULTS: in out RESULTS LIST;
STATUS: out PROCESS STNIUS);
is
NODE: NODE_TYPE;

OPEN(NODE, NAME, (READ ATTRIBUTES)):
GET_RESULTS (NODE, RESULTS, STATUS);
CLOGE(NODE) ¢
exception
when others =>
CLOSE(NCDE) ;
raise;
end GET_RESULTS;

procedure GET_RESULTS (NAME: in NAME_STRING;
RESULTS: in out RESULTS LIST)
is
NODEs NODE_TYPE;
STATUS: PROCESS_STATUS;

OPEN(NODE, NAME, (READ_ATTRIBUTES)):
GET_RESULTS(NCDE, RESULTS, STATUS);
CLOSE(NODE) 3

exception
when others =>
CLOSE(NCDE) ;
raise;

end GET_RESULTS;

5.2.2.9 Getting the paramster list
procedure GET_PARAMETERS (PARAMETERS: in out PARAMETER LIST);

Purpose:
This procedure retrieves the list of paramsters passed to the
current process node by the task which created it. The list is
stored in the predefined attribute PARAMETER LIST of the axrent
process node.

3-126

R A AT GO R A SO SRS S R N N T S A R N Sy

3052 00008 7, 2008 S o RS S Yo i O TR

PROPOSED MIL~STD-CAIS
31 OCT 1984

5.2.2.13 Aborting a process

procedure ABORT PROCESS(NODE: in NODE TYPE;
RESULTS: in RESUDTS_STRING):

Purpose:

This procedure aborts the process contained in NODE and forces any
processes in the subtree rooted at the identified process to be
aborted. The oxder of the process abortions is not specified. 1f
the state of the aborted process is examined, it will be ABORTed
provided that the process existed and was not terminated at the time
of the call to ABORT PROCESS. The node associated with the aborted

process remains until explicitly deleted.

Parameters:
NODE is an open node handle for the node of the process
to be aborted.
RESULTS is a string to be appended to the RESULTS LIST
attribute of the node of the aborted process.
Exceptionss
NAME_ERFOR is raised if the process node is inaccessible or

INTENT VIOLATION is raised if the identified process node was not
cpened with an intent establishing exclusive write
access rights.

SECURITY_VICLATION is raised if the atteampt to cbtain access to
the nods identified by NOOE represents a
viclation of mandatory access controls in the CAIS.
SECURITY VILATION is raised only if the conditions
for raising the othr exceptions are not satisfied.

Additional Interfaces:
procedire ABORT PROCESS(NAME: in NAME STRING;
RESULTS: in m:ﬁrs_smms)

is
NODE: NODE_TYPE:

OPEN(NCDE, NAME, (EXCLUSIVE WRITE));
ABORT PROCESS(NCDE, RESULTS);
CLosETNODE) 5

vhen others =>
CLOSE (NODE) ;
raise;
end ABORT PROCESS;

pi:oc-d\m ABORT_PROCESS (NODE: in NODE_TYPE)

9

..............

T T RN R A S N S L S S o0
P IEIT N AT N ‘.-:A- 'l-"l- S '.’:'_.:}L'_'g:‘c“.-_'-','-.'“-' ~_..'-_.“v_,‘-__ ")\,-

Ky

|

7

X

A

[W

o

1

3-127

T
3

[

. v=
By

%]

s

e

&,

(', %%

v -

N e ae o0 an a2 a2

i~
A tetd

Py

e

- €

b

31 OCT 1984

begin
ABORT PROCESS(NODE, "*);

end ABORT PROCESS;
procedure ABORT PROCESS(NAME: in NAME STRING)
is

NCDE: NODE_TYPE;

OPEN(NCDE, NAME, (EXCLUSIVE WRITE)):
ABORT PROCESS(NOCE, *"):
CLOSE(NODE) ;
exception
when others =>
CLOSE(NCEE) ;
raise;
end ABORT PROCESS;

Notes:
ABORT PROCESS can bs wsed by a task to t
contains it. Any cpen node handles emnating from NODE are closed
after the process is aborted.

i
¢
3
;

5.1;.2.11 Suspending a process
procedure SUSPEND PROCESS(NODE: in NODE TYPE):

has no effect if the process is not in the READY state.

Parameters:
NCDE is an open node handle for the node of the process
to be suspended.
Exceptions:

NAME_ERROR is raised if the node is inaccessible or
uncbtainable or is not a process node.

INTENT VIOLATION is raised if the identified process node was not

cpened with an intent establishing write access
rights.

SECURITY VIGLATION is raised if the attempt to obtain access to
the node identified by NODE represents a violation
of the mandatory access ocontrols for the QAIS.
SECURITY VIOLATION is raised only if conditions
for raising the other exceptions are not satisfied.

AMditional Interfaces:

3-128

TR TN I TR T, oy

PROPOSED MIL~STD~CAIS x
31 ocTr 1984 S
procedure SUSPEND_PROCESS(NAME: in NAME_STRING) &
is tr}
NODE: NOCE_TYPE;
OPEN(NODE, NAME, (WRITE)): E§
SUSPEND_PROCESS (NOUE) ; %
CLOSE(NOCE) ;
exception -
when others => N
CLOSE (NODE) ;
raise;
end SUSPEND PROCESS; e
.\N?
Notes:
SUSPEND PROCESS can be used by a task to suspend the process that —
containg it. "
S
5.2.2.12 Resuning a process o
procedure RESUME _PROCESS (NODE: in NOCE TYPE): w
Purpose: £
This procedure causes the process coontained in NODE to resume I

execution. RESUME PROCESS has no effect if the process is not
suspended. After RESUME PROCESS is called, the PROCESS STATUS of
the identified process is READY provided that the process was in the Za
SUSPENDED state at the time that the resumption tock effect. -

Parameters: —

NODE is an open node handle for the node of the process 2D
€0 be resumed. v
Exceptions:

NAME ERROR is raised jif the node is inaccessible or -
uncbtainable. ~
Yo

INTENT VIOGLATION is raised if the identified process node was not
opensd with an intent establishing write access S
rights. "

SECURITY_VIOCLATION is raised if the attempt to cbtain access to the
node identified by NODE represents a violation of K
the mandatory access controls for the CAIS. o

SECURITY VIOLATION is raised only if the
conditions ﬁar raising the other exceptions are .
. .
procedure RESUME_PROCESS (NAME: in NAME_STRING) b
is -

NODE: MNODE_TYPE;

begin &
121 _
7
3-129 7
0
T

C
.........

'-‘l'- RO
: SR ‘;;u:;b;t:;a;;ka&r;v

T A A DS P A TS T T - TR NN
AR R S R

PROPOSED MIL~STD-CAILS
31 oCT 1984

OPEN(NODE, NAME, (WRITE)):
RESUME PROCESS(NCLE) ;
Q.osE(NODE) ;
exception
when others =>
CLOSE (NCDE) ;
raise;
end RESUME_PROCESS;

5.2.2.13 Determining the state of a process
function STATE OF PROCESS(NCDE: in NODE TYPE)
retwrn PROCESS STATUS:

1
This function returns the axrent state of the process contained
in NODE.

Parameters:
NODE is an cpen node handle for the process whose status
is to be queried.
Exceptions:
NAME ERFOR is raised if the node is imaccessible or
uncbtainable.
LOCK_ERROR is raised if the node is locked against reading
attributes.

INTENT VIOLATION is raised if the identified process node was not

cpened with an intent establishing the right to
read attributes.

SECURITY_VICLATION is raised if the attempt to obtain access to the
node identified by MNODE represents a violation
of the mandatory access controls for the QAIS.
SECURITY VICLATICN is raised only if the conditions
for raising the other exceptions are not satisfied.

Additional Interfaces:

function STATE QF PROCESS(NAME: in NAME STRING)
retwn PROCESS_STATUS
is

NODE: NCDE TYPE;
RESULT: PROCESS_STATUS;

OPEN(NCOE, NAME, (WRITE)):
RESULT ;= STATE OF PROCESS(NODE):
CLOSE (NOCE) 3
return RESULT;

exception

3-13¢

T2 TS L 0 S s B N VD DA I AR N A N B Py "M 1 Ty Bl T A i A WAl A SN N £ A Ao 2 0 O S 9 AP S AR A R R
-
(]
]
X
)
1

PROPOSED MIL-STD-CAIS

_1:: 31 OCT 1984
!
B when others =>

- CLOSE (NCDE) ;

Y raise;
N end STATE OF_PROCESS;

= Notes:

The process state of the process containing the calling task will
always be READY.

» |

o
:: 5.2.2.14 Detemmining the murber of open node handles

function HANDLES OPEN (NODE : in m_m)

. return NATURAL;

= Purpose:
This function returns the value of the [predefined attribute
. HANDLES OPEN.
- Parameters:
; NODE is an open node handle to the process node of
» interest.

o

) Exceptions:
L NAME_ERFOR is raised if the node is inaccessible or
" unobtainable.
LOCK_ERFOR is raised if the node is locked against reading
.-j: attributes.

@) INTENT_VICLATION is raised if the identified process node was not

- cpened with an intent establishing the right to
- read attributes.

o SECURITY_VICLATION is raised if the attempt to obtain access to the
o node identified by NODE represents a _violation
e of the mandatory access controls for the CAIS.
. SECURITY VIOLATION is raised only if the conditions
for raising the other exceptions are not satisfied.
Mdditional Interfaces:

N function HANDLES OPEN (NAME : in NODE_TYPE)

N return NATURAL

-:‘ h

o NODE: NODE TYPE;
RESULT: NATURAL;

<. begin

:Z;. OPEN(NOCE, NAME, (WRITE)):

RESULT := HANDLES OPEN(NODE):

) CLOSE (NCDE) ;7

. return RESULT:

;-: 183

\I
§; 3-131

.- L‘_} TS AN SN .‘_..;, .;_.;, S .:_\.;_:. TR RO RTINS AN 7S SN

FT~

-
o s)

LY “,

31 oCT 1984

when others =>
CLOEE (NODE) ;
raise;
end HANDLES OPEN:

5.2.2.15 Determining the mmber of I/0 units used

function IO UNITS (NODE : in NODE TYPE)
return NATURAL;

Purpose:
This function returns the walue of the predefined attribute
IO UNITS.

Parameters:

NODE is an open node handle to the process node of
interest.

Exceptions:

NAME_ERROR is raised if the node is inaccessible or
uncbtainable.

LOCK_ERROR is raised if the node is locked against reading
attributes.

INTENT VIOLATION is raised if the identified process node was not
opened with an intent establishing the right to
read attributes.’

SECURITY_VIOLATION is raised if the attempt to cbtain access to the
node identified by MNOOE represents a violation
of the mandatory access controls for the CAIS.
SECURITY VIOLATION is raised only if the conditions
for raising the other exceptions are not satisfied.

Additional Interfaces:

function I0_UNITS (NAME : in NAME_STRING)
return NATURAL
is
NODE: NODE_TYPE;
RESULT: NATURAL;

OPEN(NCDE, NAME, (WRITE)):
RESULT := IO UNITS(NODE):
CLOSE(NODE) ¢
return RESULT:
exception
vhen others =>
CLOSE (NCOE) ¢

PROPOSED MIL~STD-CAIS

31 OCT 1984
raise;
end IO UNITS;
5.2.2.16 Determining the time of activation
function START TIME (NCDE : in NODE_TYPE)
return CALENDAR.TIME;
H
This function returns the value of the predefined attribute 3
START _TIME. <
Parameters: o
NODE is an open mode handle to the process node of ;:a
interest. .
Exceptions: o
NAME_ERROR is raised if the node is inaccessible or _4'
uncbtainable. -
LOCK_ERFOR is raised if the node is locked against reading .jl}
attributes. ;',;5!
INTENT VICLATION is raised if the identified process node was not

opened with an intent establishing the right to
read attributes.

SECURITY VICLATION is raised if the attempt to obtain access to the
node identified by NOUE represents a violation of
the mandatory access oontrols for the CAIS.
SECURITY VIOLATION is raised only if the conditions
for raising the other exceptions are not satisfied.

Additional Interfaces:

A LL

1)

.

function START TIME (NAME : in NAME_STRING)

u Y N
NODE: NODE_TYPE;
RESULT: CALENDAR.TIME; "“

OPEN(NCDE, NAME, (WRITE)):
RESULT := START TIME(NODE);
CLOSE(NCDE) 3]W
return RESULT: =
exception

when others => .,
CLOSE (NODE)) ; o
raise; B

end START TIME:

105

3-133

J'-.-"--'.‘-'.--'-.'.-"..~' e T e T N T et T e e e e et e e e e e e e e T e e et . OO
R S R R AT P LR Py i, S ey N e N DAL ;ﬁ\;‘;\iﬂmyk ‘;3:}1‘}':\ L.\j

..... .
............ -

31 OCT 1984

5.2.2.17 Determining the time of termination or abortion

function FINISH TIME (NCDE : in NODE TYPE)
return CALENDAR.TIME;

Purpose:
This function returns the value of the predefined attribute
FINISH TIME.

Parameters:
NODE is an open node handle to the process node of
interest.
Exceptions:
NAME ERROR is raised if the node is inaccessible or
unobtainable.
LOCK_ERROR is raised if the node is locked against reading
attributes.

INTENT VICLATION is raised if the identified process node was not
cpened with an intent establishing the right to
read attributes.

SECURITY_VIOLATION is raised if the attempt tO obtain access to the
ncde identified by NODE represents a violation
of the mandatory access coontrols for the CAIS.
SECURITY VIOLATION is raised only if the conditions
for raising the other exceptions are not satisfied.

Additional Interfaces:

function FINISH TIME (NAME : in NAME_STRING)
) return CALENDAR.TIME
13

NODE: NODE_TYPE;

RESULT: CALENDAR.TIME;

OPEN(NODE, NAME, (WRITE)):
RESULT := FINISH TIME(NCOE);
CLOSE (NCDE) ;
retuzrn RESULT;
exception
when others =>
CLOSE(NCDE) ;
raise;
end FINISH TIME:

106

3-134

Rt AE e e S ool e SR L ead i~ e gt g o e g repary—

........

PROPOSED MIL-STD-CAIS <
31 OCT 1984 N

for |
5.2.2.18 Determining the time a process has been active g

function MACHINE TIME (NCODE : in NODE TYPE)
return DURATION; <
Purpose: -
This function returns the valus of the predefined attribute
MACHINE TIME. a
v
Parameters:
NODE is an ocpen node handle to the process node of -
- interest. v
b1
Exceptions:
NAME_ERROR is raised if the node is inaccessible or <
uncbtainable. >
LOCK_ERROR is raised if the ncde is locked against reading |
.. attributes. bk

INTENT VICLATION is raised if the identified process node was not
cpened with an intent establishing the right to
read attributes. .

SECURITY VICLATION is raised if the attempt to obtain access to the
node identified by NOOE represents a violation —
of the mandatory access oontrols for the CAIS. .
SECURITY VIOLATION is raised only if the conditions -
for raising the other exceptions are not satisfied.

Additional Interfaces: %

function MACHINE TIME (NAME : in NAME STRING)

return DURATION -

is -

NODE: NOCE_TYPE; e
RESULT: DURATION;

begin i

OPEN(NCDE, NAME, (WRITE)): =

RESULT := MACHINE TIME(NODE);
CLOSE (NOCE) ; ‘
exception
when others =>
CLOSE(NCIE) ; L
raise; X
end MACHINE TIME;

.
P
v'..
2
-
3-135
=~
... AR
g RS DA A L A

DACMLIG O 08 4 1) Rat i g pa gt g
.

% 5%
B4

|

I s and
[P

0
'I -

— S — —
, n” s v !
2. a

AR

31 OCT 1984

5.2.2.19 Determining the standard input file
function JOB_INFUT FILE return NAME STRING;

3
This function returns a pathname to the standard input file node
defined at the initiation of the root process node of the job, even
if the current default input file for this process has been set to a
different file.

Parameters:
None.

Exceptions:
LOCK_ERFOR is raised if the root process node is locked against

reading relationships.

Notes:
In general, this file will refer to the interactive terminal or
batch input file.

5.2.2.20 Determining the standard output file
function JOB_OUTPUT_FILE return NAME_STRING:

Purpose:

This function returns a pathname to the standard output file node
defined at the initiation of the root process node of the jcb, even
if the current default output file for this process has been set to
a different file.

Parameters:
None.

Exceptions:
LOCK_ERROR is raised if the root process node is locked against
reading relationships.

Notes:
In general, this file will refer to the interactive terminal or
batch error messages file.

IS RN ARG A ok SA g S & oy £ g PR L SRA R, s, AL L, e Wiy vk g LSS B Sl ot ta o) . o K .9 Piag i ~
B g MAe g Oy Sl e - - e YT R

‘
;' %
~ PROPOSED MIL~STD~CAIS D
: 31 OCT 1984 L
Loy

=4

5.2.2.21 Determining the standard error messages file
function JOB_ERROR FILE return NAME STRING;

A oML

Purpose:
This function returns a pathname to the standard error messages file
node defined at the initiation of the root process node of the Jjob,
even if the current default messages file for this process has been

ol set to a different file. "
‘ Parameters: .
I‘\" m. .—

‘_: LOCK_ERROR is raised if the root process node is locked against -
S reading relationships. 3
Notes:

In general, this file will refer to the interactive terminal or A
o batch error messages file. el

-
..‘
-,
o -
- .
> e T
- l'
. -
- v
p* -
<
“ -
!
= .

.-

RRRRARNN
~ &

N

e
B

p
D
-9 L R

Rd . -

" o

- K}

- !

= -
2 .J

0' »

L]

N

—

a 3-137

5.3 CAIS Input/output

Support for all kinds of files are provided by the

packages CAIS IO CONTROL and CAIS IO EXCEPTIONS. Additionally, each of
the different Ffile kinds is Further supported by a set of packages.
Secondary files are further supported by the packages
CAIS_SEQUENTIAL IO, CAIS DIRECT IO, and CAIS TEXT IO. Queue files are
ﬁmﬂmwwﬂammsmm and CAIS TEXT IO.
wmummwwmmmsmm,
CAIS SCROLL TERMINAL, CAIS PAGE TERMINAL, anmd msmmmm‘nn
wcmmwmaanwwwmm
CAIS SEQUENTIAL IO, CAIS TEXT IO, and CAIS MAGNETIC TAPE. The file
kixﬂsandtheuauociateﬁamtpadegummr‘izedin?ablem.

TARLE IX. Input/Output Packages for File Kinds

i
:
E
i

CAIS IO CONTROL
CAIS IO EXCEPTIONS
CAIS_SEQUENTIAL IO
CAIS_DIRECT_IO
CAIS TEXT IO

CAIS SCROLL TERMINAL
CAIS PAGE TERMINAL
CAIS FORM_TERMINAL
msmncm

(A

|
)
>

|
RN MR
L

>

NS |
(
1

bR R R

»

e e e e e e e s
A o e s ety et g e o

.r —_—————————

Implementations of the packages SEQUENTIAL IO, DIRECT IO, and TEXT IO
specified in [LRM] that operate upon CAIS files are to be constructed
such that the finctionality of each subprogram in the respective CAIS
WQISWIO,QISDIMIO, and CAIS TEXT IO is the

Secondary storage files may be created by use of the CREATE procedures
specified in the packages CAIS SEQUENTIAL IO, CAIS DIRECT IO, and
CAIS TEXT I0. Queue files may be created by use of the CREATE
pu:ocedm‘es in the packages CAIS SEQUENTIAL I0 and CAIS TEXT IO.
Interfaces must be provided ocutside the CAIS for the creation of
terminal files and magnetic tape drive files.

A file nocde has a mmber of predefined attributes associated with it.
The attributes ACCESS METHOD, FILE KIND, QUEUE TYPE, and TERMINAL TYPE
provide information about the contents of a file node and how it may be
accessed.

119

3-138

T T T e R L Y A e T T S Ly N Y YV S ULV TN TS LW WL WU R TRA L s P o v w ‘j‘.‘j""“w

]

31 OCT 1984 N
ind
The predefined values for the attribute ACCESS METHOD are SEQUENTIAL, S

DIRECT, and TEXT or any list cambination of these. The value of the

attribute ACCESS METHOD determines the packages that may operate upon

the file. A value of SEQUENTIAL indicates that the CAIS SBQUENTIAL IO)
package may be used. A value of DIRECT indicates that the package I
CAIS_DIRECT IO may be used. A value of TEXT indicates that the package
CAIS TEXT IO and possibly other packages (depending on other attribute
values) may be used. It is possible that a single file node may have ~
more than one access method.)

The attribute FILE KIND denctes the type of file that is represented by ..
the contents of the file node. The predefined values for the attribute o
FILE KIND are SECONDARY STORAGE, QUEUE, TERMINAL, and MAGNETIC TAPE. A o
file node with a value of SECONDARY STORAGE or QUEUE may be operated

uon by the packages CAIS SEQUENTIAL 10, CAIS DIRECT IO, or
CAIS TEXT IO. A value of QUEUE permits operations by the package '
CAIS SBQUENTIAL I0 or CAIS TEXT IO0. A value of TERMINAL permits
Operations by the package CAIS TEXT IO and the three terminal packages.

v.‘
S e

i

file node.
A file node with a QUEUE TYPE of copy or mimic will
file

relationship of the predefined relation ASSOCIATE to the -
which it is associated. =

values SCROLL, PAGE, or FORM.
A file node for a magnetic tape drive has a value of MAGNETIC TAPE

the attribute FIIE KIND and a value of TEXT for the attribute
ACCESS METHOD. The packages CAIS TEXT IO and CAIS TAPE IO may be used

for operating on a magnetic tape drive flle.

111

3-139

!J A -rﬁu R -.2-

PROPOSED MIL~STD-CAIS
31 oCT 1984

5.3.1 Package CAIS DIRECT IO

This package provides facilities for direct-access input and output
QAIS files camparable to those described in the DIRECT IO

(trM]. Files written with the CAIS DIRECT IO are also
CAIS _SBQUENTIAL IO, if the data types are the same.

MpackaqespodﬁcaMa:ﬂmntiaotﬂumsmmis
comparable to that of the [LRM] package DIRECT I0. The
sections demonstrate the specifications and semantics that differ.

%i

5.3.1.1 Types, subtypes, constants, and exceptions
subtype FILE TYPE is CAIS 10 CONTROL.FILE TYPE;

subtype FILE MOCE is CAIS_10_CONTROL.FILE MODE;

IN FIIE : constant FILE MOCE := IN_FILE;
nnrrmz:mm-.mzm s= INOUT FILE:
QUT_FILE : constant FILE MODE := OUT_FILE;

FnETYEuuseduaMrﬂleﬁora..ldirecthm
Operations. FILE MODE indicates the intent upon accessing
input or output file.

i

5.3.1.2 Creating a direct I/0 file
procedure CREATE(FILE

H
BASE : in NODE_TYPE;
KEY : in RELATICNSHIP KEY ;= LATEST KEY;
RELATION : in RELATION } s= DEFAULT RELATION;
MODE : in FILE MODE := INOUT FILE;
FORM : in LIST TYPE := EMPTY LIST;

ATTRIBUTES: in LIST TYPE := EMPTY LIST;
ACCESS QONTROL: in FORM_STRING := "*;
LEVEL:™ in = FORM STRING 1= ");

DOt ot S

v,
]
o PROPOSED MIL-STD-CAIS
ot 31 OCT 1984
o
LY
1
'l This procedure creates a file and its file node; each element of
& the file is directly addressable by an index. The attribute
< ACCESS METHOD is assigned the value "(DIRECT, SEQUENTIAL)" as part
5 of the creation.
>
The oontents of FORM have the syntax of a LIST TYPE (Section 5.4).
i The FORM parameter is used to provide file characteristics
o concerning the creation of the file. The predefined file
7 characteristic SIZE may be used to specify an approximation to the
o mmber of STORAGE UNITs that should be writable to the file. The
SIZE characteristic is specified as "(SIZE => n)", where "n" is any
~ NATURAL mumber.
- attributes of the node (for the use of values of type LIST TYPE, see
- Section 5.4.3.2 CAIS LIST UTILITIES). The ACCESS CONTROL parameter
o specifies initial access control information to be established for
N the created node.
Yoy
" _The LEVEL paramster specifies the security level at which the file
R node is to be created.
- The value of the attribute FILE KIND for the file node will be
Xy SECONDARY_STORAGE.
i Parameters:
- FILE is a file handle, initially closed, to be cpened.
::: BASE is an open handle to the node which will be the
N source of the primary relationship to the new
. node.
. . KEY is the relationship key of the primary
relationship to be created.
: RELATION is the relation name of the primary relationship
to be created.
- MODE indicates the mode of the file.
" FORM indicates file characteristics.
- ATTRIBUTES defines initial values for attributes in the
A newly created node. oo
. vl
» ACCESS OONTROL defines the initial access control information =
associated with the created node.
. '~
N LEVEL defines the classification label for the created :?,
.. node.)
-
A 113 .
q N
: "f
A 3-141
Y
N
N
e N N

E
oA PROPOSED MIL~STD-CAIS
;:,. 31 OCT 1984

NAME ERROR is raised if a node already exists for the node
identification given, if the node identification is
syntactically illegal, or if any group ncde specified
in the value of the ACCESS CONTROL parameter is

=z

i uncbtainable.
~
' STATUS ERROR is raised if BASE is not an open node handle, or if
- FILE is an open file handle prior to the call.
:t‘.:' USE_ERROR is raised if the ACCESS CONTROL or LEVEL parameters do
! not adhere to the required syntax or if the ATTRIBUTES
o paramester contains references to predefined attributes
[not modifiable by the user.
i INTENT VIOLATION is raised if BASE was not opened with an intent
4 e establishing the right to append relationships.
& v m_wmmunisedfonmtimMaviohﬁm
., of mandatory security rules. SECURITY VIOLATION is
v raised anly if the conditions for other exceptions
< are not present.
- Additional Interface:
-
e procedure CREATE(FILE : in out FILE TYPE;
Y NAME : in NAME_STRING;
A MODE : in FILE MODE := INOUT FILE;
] FORM : in LIST TYPE := EMPTY LIST;
: ATTRIBUTES: in LIST TYPE := EMPTY LIST;
ACCESS CONTROL: in FORM_STRING =,
:-‘_'. LEVEL: in FORM_STRING 1= ")
vr:': is
BASE : NODE TYPE:
begin
- OPEN(BASE, BASE ;_ PATH(NAME), (APPEND) RELATIONSHIPS)):
- CREATE(FILE, BASE, LAST KEY(NAME), LAST RELATION(NAME),
. MODE, FORM, ATTRIBUTES, ACCESS cnm. LEVEL):
. CLOSE(BASE) ;
. exception
T when cothers =>
CLOSE(FILE);
. CLOSE(BASE) ;
. erdd CREARTE;
-
114
b
. 3-142
B S R S S I R st o R NN

Pe 58 10 SN DB 0 Do W R M S ¢ R AU R g rale L W Wi Y K S Ve @ 8 s Ve gt e L P Pyry—— e - g YK

" PROPOSED MIL~STD-CAIS o

>, 31 OCT 1984 e

‘ 5.3.1.3 Opening a direct 1/0 file ol

N 3]

¢ procedure OPEN(FILE : in out FILE TYPE;

‘ NOCE : in NODE_TYPE; :
MODE : in FILE MODE 1= INOUT_FILE); 3

Purpose:
This procedure cpens a handle on a file; each element of the file

is directly addreasable by an index.

()

Parameters:
FILE is a file handle, initially closed, to be cpened. <
NODE is an open handle to the file node. ’
MoDE indicates the mode of the file. :
N
A Exceptions: ’
USE_ERROR is raised if the attribute ACCESS METHOD of the file .
node does not have the value DIRECT or the element »]
type of the file does not correspond with the element =)
type of this instantiation of the CAIS DIRECT IO
- package. o
- STATUS FRROR is raised if the FILE is already open prior to the
call on OPEN. i
A INTENT_VIQLATION is raised if NODE has not been opened with an intent -
o establishing the right associated with the MOCE .
) specified, as explained in Table VIII. -
] N
Additional Interface:)
procedure CPEN(FILE : in out FILE TYPE; -
NAE : in NAME STRING 0
i MXE : in FILE MODE := INOUT FILE)
; NOCE : NODE_TYPE;
¢ begin -
case MODE is
IN FILE => CPEN(NCODE, NAME, (READ CONTENTS));: o
OUT_FILE => OPEN(NCDE, NAME, (WRITE_CONTENTS)): 3
INOUT_FILE =>QPEN (NODE,NAME, (READ_CONTENTS,WRITE _CONTENTS));)
APPEND FILE => OPEN(NCDE, NAME, (APPEND CONTENTS));]
. ad case: e
3 OPEN(FILE, NCDE, MODE) o
' CLOSE(NCDE) 7
vhen others => ‘
3 CLOSE(FILE); -~
. CLOSE (NCDE) 7
: end OPEN v
e
115
3-143
T R O I R I R N o S e O I T o I R N L T TR R

A m e e e A Y ey e VL WL T A Y L N v T T ‘ﬁ.rw“m

-

A PROPOSED MIL-STD-CAIS

- 31 ocr 1984

a Notes:
g The effects of closing an cpen file node handle on the open file

handle to the contents of this node are implicitly defined. 1In

- cular, moO can be mede about the access
! E: synchronization provided by the node model.
B)

5.3.2 Package CAIS_SBQUENTIAL IO

. This package provides facilities for sequentially accessing data
. elaments in CAIS files. These facilities are oomparable to those
described in the SBQUENTIAL IO package of [LRM].

The package specification and semantics of the CAIS SEQUENTIAL IO is
camparable to that of the [LRM] package SEQUENTIAL I0.” The following

e

-~
D
f

:-:j sections demonstrate the specifications and semantics that differ.
- 5.3.2.1 Types, subtypes, constants, and exceptions
} © subtype FILE TYPE is CAIS_IO_CONTROL.FILE TYPE;
b subtype FILE MODE is CAIS_IO_CONTROL.FILE MODE;
(-
A IN FILE : constant FILE MCE := IN FILE;
- INOUT FILE : constant FILE MODE := INDUT FILE;
¥ QUT FILE : constant FILE MODE := OUT_FILE;
. APPEND FILE : constant FILE MODE := APPEND FILE;
g FIILE TYPE is used as a handle for all sequential input and output
K cperations. FILE MODE indicates the intent wupon accessing the

A sequential input “or output file. A mode of APPEND FILE causes any
elements that are written to the specified file to be appended to the
elements that are already in the. file.

y 5.3.2.2 Creating a sequential 1/0 file

Y procedure CREATE(FILE : in out FILE TYPE;

e BASE : in NODE_TYPE;

5 KEY s in RELATIONSHIP KEY := LATEST KEY;
e RELATION : in RELATION NAME := DEFAULT RELATION:
e MCODE ¢ in FILE MOCE := INOUT FILE
' FORM : in LIST TYPE ;= EMPTY LIST

NS Purpose:
RIS This procedure creates a file and its file node; each element of
A the file is sequentially accessible. The attribute ACCESS METHOD is
& assigned the value "(SEQUENTIAL)" as part of the creation.
S
U
- 116
[
5
'ay.‘g\ -. J, e .'_. -.. ety ut , . ".-, ROy N ""‘4' » e .;_-,}:,:-..‘ -.; :‘ -.-:_-:,w_..- -- ‘ 7 "’"\ﬂ"‘:"‘\';j

W LA T R N T R g ey DU S G IRt MR i i

AN

PROPOSED MIL~STD-CAIS
31 OCT 1984

LR

R
e,

ik

The oontents of FORM have the syntax of a LIST TYPE (Section 5.4).
The FORM parameter is used to provide file characteristics
concerning the creation of the file. The predefined file
characteristic SIZE may be used to specify an approximation to the
mmber of STORAGE UNITs that should be writable to the file. The
SIZE characteristic is specified as '(SIZE => n)', where 'n’ is any
NATURAL manber.

The ATTRIBUTES parameter defines and provides initial values for
attributes of the node (for the use of values of type LIST TYPE, see
Section 5432Q\ISLIS!‘U‘1‘ILITIE). 'memo:m'n
specifies initial access control information to be established for
the created node.

A

1)

The LEVEL parameter specifies the security level at which the file ™
node is to be created. o

The default value for the attribute FILE KIND for the file node will

be SECCNDARY STORAGE. The default value mmy be overriddsn by o
explicitly specifying a value of QUEUE in the FORM parameter (e.g. .
‘(FILE KIND => QUEUE)'). The default QUEUE TYPE is a solo queue.

Parameters:
FILE is a file handle, initially closed, to be opened.
BASE is an open handle to the node which will be the .
source of the primary relationship to the new node. -~
KEY is the relationship key of the primary relationship
to be created. s
BRS
RELATION is the relation name of the primary relationship to a
be created.
L]
MOCE indicates the mode of the file. ~
FORM indicates file characteristics.
ATTRIBUTES defines initial values for attributes in the newly =
created node.
ACCESS CONTROL defines the initial access ocontrol information ""
associated with the creatsd node.
LEVEL defines the classification label for the created
node.
o
Exceptions: .
NAME ERROR is raised if a node already exists for the node
identification given, if the node identification is
syntactically illegal, cr if, for the parent node of .
the node to be created or any group node specified in o

117

3-145

o g ™ Gy =T W TN TR ¥

B A R RO IR IS S N e CAR 0 e 8ty R e N Ay e il M S e il Bl batt o ol M TPt A S i o Nt~ oo

..............

PROFOSED MIL~-STD-CAIS
31 OCT 1984

the given access list, the node is unobtainable.

STATUS_ERRCR is raised if BASE is not an open node handle or if
FILE is an open file handle prior to the call.

INTENT VIOLATION is raised if BASE was not opened with an intent
establishing the right to append relationshipas.

SECURITY VIGLATION is raised if the operation represents a violation
of mandatory security rules. SECURITY VIGLATION is
raised only if the conditions for other exceptions
are not present.

use CAIS NCDE MANAGEMENT;
procedure CREATE(FILE : in out FILE TYPE;
NAME : in NAME_STRING;
MODE : in FILE MODE := INOUT FILE;

is
BASE : NODE_TYPE;
OPEN(BASE, BASE PATH(NAME), (APPEND RELATTCNSHIPS));

CREATE(FILE, BASE, LAST KEY(NAME), LAST RELATION(NAME),
MODE, FORM, ATTRIBUTES, ACCESS CONTROL, LEVEL):

5.3.2.3 Opening a sequential I/0 file

procedure OPEN(FILE : in out FILE KIND:
NODE : in NODE_TYPE;
MODE : in FILE_MODE);

Purpose;
This procedure opens a handle on a file; each element of the file

is sequentially accessible.

. e Parameters:

[:.; : FILE is a file handle, initially closed, to be opened.
k NODE is an open handle to a base node for node
.o

e s 118

e

'a ..:'a

. 3-146
¥y P

P L

N N R S A R I S

" i ‘mi euliaar™ N g e o e 4 s Y v el B el —
PNL IR A N NP D A o B AT i Tt S S s i S et S iR 4 BT AY A S I aCRMa R A MA A A Pal sl bad el Tl A4 Vad S AL NS A

PR A

PROPOSED MIL-STD-CAIS ¢
31 OCT 1984 !
identification. .
: MODE indicates the mode for accessing the file.
i
\' l:}
* Exceptions:
- USE_ERFOR is raised if the attribute ACCESS METHOD of the file -
y node does not have the value SEQUENTIAL or the -
element type of the file does not correspond with the
element type of this instantiation of the .
QAIS_SEQUENTIAL IO package. "
STATUS ERROR is raised if the FILE is already open prior to the -
call on OPEN. .
INTENT VIOLATION is raised if NODE was not oOpened with an intent .
establishing the right associated with the MODE "
specified, as explained in Table VIII. a
Additional Interface:
procedure OPEN(FILE : in out FILE TYPE:
NAME : in NAME_STRING;
. MXE : in FILE MODE :=INOUT FILE): -
NCDE : NODE_TYPE:
begin
case MOLE is
IN FILE => OPEN(NODE, NAME, (READ CONTENTS));:
OUT_FILE => OPEN(NODE, NAME, (WRI'IE_WIS))t -
INOUT _FILE =>OPEN(NCDE,NAME, (READ CONTENTS, WRITE_CONTENTS));
APPEND FILE => OPEN(NCDE, NAME, (APPEND CONTENTS)]: =
end case: i
OPEN(FILE, NCDE, MCCE) .
CLOSE (NCDE) 7 :
~
when others =>
CLOSE(FILE); -
CLOSE (NCDE) ; =
end OPEN; '
119
3-147

. RD-R168 355 KAPSE (KERNEL ADA PROGRAMMING SUPPORT ENVIRONMENT) 3/4

INTERFACE TEAM PUBLIC REPORT VOLUME SCU) NAVAL OCERN
SYSTEMS CENTER SAN DIEGO CA P A OBERNDORF AUG 85
UNCLASSIFIED NOSC/TD-552-VOL-5 F/G 9/2 NL

4
*
3
L
.wq
»
4
i
$
¥

]
[4
uu
+

N

ﬁ\,l.“sl.\,! o AT HIRTL T

rd
N .
14
> - - !
~ - -
)
g ~B O
~f o R 2
™
=FET
n
EEFFETITT
® .
E— L]
e — F———
_ ==
. PANDERIA RN - ARG

-

WI.ZS 14 g6

ce .

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS ~ 1963 — A

1
, s..”. P
”b.c\f.-!
s
)

MMVORIAY | SRR .. .

b WA LA Sy T L Y en L TS Rt gy e g P o Sy P N g2 v g A S Vg~ S P Vg v MY 2oty ap o

B
, S PROPOSED MIL~STD-CAILS
y E} 31 OCT 1984
| ! 5.3.3 Package CAIS TEXT IO
' This package facilities for the input and cutput of textual
" data to CAIS files. These facilities are camparable to those specified
AN in the package TEXT IO in [LiM]. The following sections are those that
. differ from the specifications in [LAM].
F 5.3.3.1 Types, subtypes, constants, and exceptions
NI subtype FILE MXE is CAIS_IO CONTROL.FILE MODE;
IN FILE : constant PILE MODE := IN FILE;
oy INOUT FILE : constant FILE MODE :;= INOUT FILE;
o QT FIE : constant FILE MDE := OUT_FULE;
- APPEND FILE : constant FILE MODE ;= APPEND FILE;
N FILE_TYPE nwuamnmmmmmmﬂm.
"B »] FILE MDE indicates the intent upon accessing the text imput or output
file. Amdaofm_ causes any text written to the specified
S e file to be appended to the text that is already in the file.
P
- 5.3.3.2 Creating a text 1/0 file
i procedure CREMTE(FILE : in cut FIILE TYPE;
' - BASE t in NODE TYPE;
y KEY s in RELATIONSHIP KEY := LATEST KEY;
"o f’ RELATION : in RELATION NAME := DEFAULT RELATION;
- - MODE :in FILE MOE = INOUT FILE;
. - FORM s in LIST TYPE = EMPTY LIST:
™ AITRIBUTES: in LIST TYPE := EMPTY LIST:
K ACCESS CONTROL: in FORM STRING = "";
- LEVEL:~ in PFORM_STRING 1= "")
N Purpose:
‘« - This procedure creates a file and its file node; the file is
S textual. The attribute ACCESS METHCD is assigned the value "(TEXT)"
= as part of the creation.
L
oo The ocontents of FORM have the syntax of a LIST TYPE (Section 5.4).
The FORM parameter is used to provide file characteristics
N concerning the creation of the externmal file. The predefined file
ASEC characteristic SIZE may be used to specify an approximation to the
mmber of STORAGE INITs that should be writable to the file. The
- SIZE characteristic is specified as '(SIZE => n)', where 'n' is any
G NATURAL murber
o ,:.-
Lol The MTRIBUTES parameter defines and provides initial values for
- attributes of the node (for the use of values of type LIST TYPE, see
:{ - Section 5.4.3.2 CAIS LIST UTILITIES). The ACCESS CONTROL parameter
i 129
-
.
;") 3-148

TINEN

FROTANIAOS

AN,

P

(N
a

»

QAR . AN

i
v

LA

a0

ottt

l-\'s

‘? -‘

WMy ® @

R I i O A WO R G ORI ¥ e axt L Gl C O A SR A ¥ ok R 7 ol P o g I 05 g So g Yt A S P

PROPOSED MIL~STD-CAIS
31 oCT 1964

initial access comtrol information to be established for
the created node.

The LEVEL parameter specifies the security level at vhich the file
node is to be created.

The dafault value for the attribute FILE KIND is SECONDARY STORAGE.
the default valus may be overridden by explicitly specifying a value
of QUEUE, TERMMAL or MAGNETIC TAPE in the FORM parameter (e.g.,
*(FILE_KIND = QUEUE)'). Specifying the FILE KIND as QUELE creates
a s0lo queus.

Parameters:

FI1E is a file handle, initially closed, to be cpened.

BASE is an opsn handle to the node which will be the
soarce of the primary relationship to the new node.

KEY is the relationship key of the primary relationship
to bes created.

RELATION is the relation nems of the primmary relationship to
be created.

MOCE indicates the mode of the file.

FORM indicates file characteristics.

ATTRIBUTES defines initial valuss for attributes in the newly
created node.

AMXESS QOONTRCL, defines the initial access ocontrol information

- associated with the creatsd node.
LEVEL defines the classification label for the created
node.
Exceptionss
NAME_ERFOR is raised if a node already exists for the node

identification given, if the node identification is

syntactically illegal, or if any grouwp node
specified in the valus of the ACCESS CONTROL
parameter is unobtainable.

STAIUS _ERROR is raised if BASE is not an opsn node handle, or if
FILE is an cpen file handle prior to the call.

USE ERFOR is raised if the ACCESS CONTROL or LEVEL parameters
do not adhere to the rcquir-dlynuxorif.ﬂxe
references

paramster
m:mmm:m:.wmw

121

B R R S ek e R dhr®

T ’-'-f..’ './'.25‘.'-‘7' .l' q w "

.
o xR A G o Xen Nt

'"‘ffq AN -\--

el s W)

'0. a4 8,

&

o T

.l
s}

{ K

la

R

3-149

W R W W Y TN T T N TR TR YT VT T YT

Gy PROPOSED MIL~STD-CAIS
o 31 OCT 1984
C
INTENT VICLATION is raised if BASE was not cpensd with an intemt
! establishing the right to append relationships.

. SECURITY_VIOLATION is raised if the operation represents a viclation
b of mendatory security rules. SECURITY VICLATION is
K raised only if the conditions for other exceptions

are not present.
n Additicnal Interface:

g
:
:
|

BASE : NODE TYPE;

- begin
"] OPEN(BASE, BASE PAXTH(MAME), (APPEND RELATIONSHIPS));
CREATE(FILE, BASE, LAST KEY(NAME), LAST REIATION(NAME),
- MODE, FORM, ATTRIBUTES, ACCESS CONTROL, LEVEL);
- CLOSE(BASE) ;
exception
vhen others =>
. CLOSE(FILE):
. CLOSE(BASE) ;
end CREATE;

5.3.3.3 Opening a text I/0 file

A procedure OPEN(FILE : in out FILE TYPE;
- MODE :in NODE_TYPE;

MIE 3 in FILE MOOE := INOUT FUE):

H
This procedure cpens a handle an a file that has textual contents.

L
. Parameters:
- FIILE is a file handle, initially closed, to be cpenad.
NODE is an open handle to the file node.
.
= MODE indicates the mode of the file.
’ Exceptions:

USE_ERFOR is raised if the attribute ACCESS METHOD of the file
. node does not have the value TEXT or the elament type
C

122

‘1“. .3 Y LR SE Y 3 e T A T e ¥ A A -1 1 A - A - RAe L3 i hals hakl ®, ». ¥ » T i
¥4

A PROPOSED MIL~STD-CAIS o

. 31 ocr 1964 o
of the file doss not correspond with the elemnt type -

7 of this instantiation of the QAIS TEXT IO package.

e,

v STATUS ERROR ~ is raised if the FIIZ is already open prior to the &

. call on OPEN.

INTENT VICLATION is raised if NODE has not been opened with an intent

B establishing the right associated with the intent
a associated with the MODE specified, as explained in s
.‘~ TlhIC mxo -
- 73
. N
- Additional Interfaces)

: procedure OPEN(FILE : in out FILE TYPE; ?:j
s NAME 3 in NAME_STRING; SV
- MXDE : in FILE MCE s=INOUT FILE);

)

. 1. -
X + NODE_TYPE; ﬂ‘
9 case MIE is
= IN_FIIE => OPEN(NOCE, MAME, (READ_CONTENTS)); o
" QUT_FILE => OPEN(NODE, NAME, (m_cxmnns)): Ye
- INOUT FILE =>OPEN(NODE,NAME, (READ CONTENTS,WRITE CONTENTS)): .
< APPERND FILE => OPEN(NODE, NAME, (APPEND_CONTENTS)]:
i~ end case; -
! OPEN(FILE, NCDE, MODE) -
- CLOSE(NODE) ;

. exception .
- when others => -~
- CLOSE(PILE); g
2 CLOSE(NCDE) 7

eand OPEN: -

5 =~
- 5.3.3.4 Reading from a file
- procsdure GET(...);

' Purpose: X

Thase procedires read characters from the specified text file. 5

: For all valuss of the attribute FILE KIND only reading of the .

printable ASCII characters plus the formt effectors called .
horigontal tabulation, vertioal tabulation, carriage return, line -
feed, and form feed are defined. All of the printable characters

. plus ths horizontal tabulation and vertical tabulation characters .
v, may be read as characters. The characters carriage return and line
-~ fesd are t0 be treated as lins temminators whether encountered "
- singly or together (i.e. CR, LF, CRF, and LFCR are line
>y temminators). The character form feed is to be treated as the page .,
123
. ™
.:' :\
. 3-151

5.3.3.5 Setting the input file
procedure SET INPUT(FILE : in FILE TYPE);

Purpose:
In addition to the semantics specified in the [LRM], the
‘CURRENT_INPUT of the calling process is set to refer to the
associated with FILE.

is an open file hardile.

is raised if the mode of FILE is OUT FILE o
APPEND_FILE.

is raised if FILE is not ocpen.

5.3.3.6 Setting the output file
procedure SET OUTPUT(FILE : in FILE TYPE);

5.3.3.7 Setting the error file
procedure SET ERROR(FILE : in FILE TYPE);

procedure
ocutput. In addition, the relation ‘CURRENT ERROR of the calling
procedure is set to refer to the node associated with FILE.

Parameters:

FIIE is the desired default file.

Exceptions:

MODE_ERROR is raised if the mode of FILE is IN FILE.

STATUS_ERROR is raised if FILE is not cpen.

5.3.3.8 Dstermining the standard error file
function STANDARD ERROR return FILE TYPE;
Purpose:
This function returns a handle on error cutput file that was set at
the start of program execution.

Exceptions: none

5.3.3.9 Determining the current error file

function CURRENT ERROR return FILE KIND;
This function returns the cwrrent error cutput file, which is either
the standard error file or the file specified in the most recent
invocation of SET_ERROR.

Parametsrs: none

Exceptions: mnone

125

3-153

) ¥

s

mery

Y

'V‘.

,...._‘

1] "p Y ’.'-

: B

31 oCT 1984

5.3.4 Package CAIS_IO EXCEPTIONS

This package provides the definitions for all exceptions generated by
the input and cutput packages. These definitions are ocomparable to
those specified in the package IO EXCEPTIONS in [Lmm].

5.3.5 Package CAIS IO CONTROL

This package defines facilities that may be used to modify and/or query
the functionality of CAIS files.

The package provides for association of input and cutput text files with

an output logging file. It also provides facilities for forcing data
from an internal file to its associated extarnal file.

5.3.5.1 Types, subtypes, constants, and exceptions
type CHARACTER LIST is array(CHARACTER) of BOOLEAN;
type FILE MOCE is (IN _FILE, INOUT FILE, CUT_PFILE, APPEND FILE);
type FILE TYPE is limited private;
type FUNCTION KEY DESCRIPICR is limited private:
type FOSITION TYPE is
record

ROW : NATURAL;
COLUMY : NATURAL;

b= 0

[4

D D ¥ ek]

AR Wl SENE AL

e

f e

W UM W G R, AL AT e 5

31 OCT 1964

5.3.5.2 Obtaining an opsn node handle fram a file handle

procedure NCDE(FILE : in FILE TYPE;
s in out NODE TYPE):

Purposes
This function returns an cpened node handle for thse node associated
with a file.
Parameters:
FIIE is an open file handle.

NOUE is a node handle, initially closed, to be opened.

3
STATUS_ERROR is raised if FIIE is not open or if NODE is open.

5.3.5.3 Synchronizing program IO with system IO
procedure SYCHRONIZE(FILE : in out FILE TYPE);
Purpose:
This procedure forces all data that has been written to the intermal

file FILE to be tranmmitted to the external file with which it is
associated.

Parameters:

FILE is the internal file to be sychronized.
Exceptions:

USE_ERROR is raised if FILE is of mode IN FILE.

STATUS_ERROR is raised if FIIE is not open.

5.3.5.4 Establishing a 10G file

procedure SET 1OG (FILE t in out FILE TYPE
10G_FILE ; FILE

in
prooedure establishes a log

This file for FILE (a file of mode
INOUT FIILE or QUT FILE). All elemants written to internal file FILE
are also written to LOG FILE.

Parameters:

FILE is the file vhich is to have a log file.

LOG_FIILE is the file to which the log should be written.
Exceptions:

3 i N AT R AR P Y AP E R K 2 s " 2 i Y .
ey o oin o ke e - - - iy 40N Nea W, Wiy NN

3-155

- 7

I Y

Ik

-

L

[

et}

>SS

aladiat e Pa "ata-ta I JON L A ! ; p o JAC e @ 0 Pt hah Dot Bt ote e Ae el Gl gAd gil R uid A P S g Sl el Bl el g Rt arl ~atmnidamn ~aeron

rv.

e PROPOSED MIL-STD-CAIS

o 31 OCT 1984

' MODE,_ERFOR is raised if the mode of either FILE or LOG FIIE is
o IN_FILE.

USE_ERROR is raised if FILE and LOG FILE do not have the same
. valuss for the attribute ACCESS METHOD or do not have
b campatible elaments (implemsntation-defined).

STATUS_ERROR is raised if LOG FILE is not open.

o |

Lj}' 5.3.5.5 Removing a log file
procedure CLEAR LOG FIIE(FILE : in FILE TYPE):

Purpose:
o This procedire removes the log file established for FILE.

Parameters:
- FILE is an cpen file handle that has a log file.

Exceptions:
USE_ERROR is raised if FILE does not have a log file.

STATUS ERFOR is raised if FILE is not open.

5.3.5.6 Determining whether logging is specified

Al

b function LOGGING (FILE : in FILE TYPE)
S return BOCLEAN;

:

Purpose:
‘ This function returns TRIE if FILE has a log file; otherwise FALSE.

- Parameters:

: FILE is an open file handle.

v Exceptions:

= STATUS_ERROR is raised if FILE is not OPEN.

=

v

I‘

5 ._.(

- 128

Do

: . 3-156
-

i GG 3 A G PR S v i et ame e

ma e e e W N AT

31 oCr 1984

5.3.5.7 Detexrmining the log file

function LOG_FILE (FILE : in FILE TYPE)
return FILE KIND;

]
This function returns the current logging file associated with FILE.
The file handle returned is not open if not logging.

o Parameters:
2 : FIILE is an open FILIE.
-~
‘ Exceptions:
USE_ERROR is raised if FILE has no log file.
o STATUS_ERFOR is raised if FILE is not OPEN.

5.3.5.8 Determining the file size

function SIZE (FILE : in m.'._'rm)
return NATURAL;

Purpose:
This function returns the muber of elemsnts contained in FILE.
. Parametars:
- FILE is an open secondary storage or queus file.
. Exceptionss
A USE_ERROR is raised if the file type of FILE is neither

QUEUE nor SECONDARY STORAGE.
STATUS ERROR is raised if FILE is not QPEN.

5.3.5.9 Setting the prawpt string

first. The string and echoed input are also copied to o
the log file, if any.

Parameters: :I’_
TERMINAL is an cpen terminal handle. o

PROMPT is the new value of the prampt.

S E——" T——— g _" "
P « e . BN A PP e i i gy 4 PLid Sl 2adr i S e e ghen o & o Shan oan Jooe el e

PROPOSED MIL~STD-CAIS
31 OCT 1984

Exceptions:
USE_ERROR is raised if the attrihmm_mm
not have the value SCROLL.

STATUS_ERROR is raised if FIIE is not open.

5.3.5.14 Detemmining the prawpt string
function PROMPT (TERMINAL : in FILE TYPE) return STRING:

Purpose:

This function returns the current prampt string for FILE.
Parameters:

TERMINAL is an open terminal handle.

Exceptions:

USE_ERFOR is raised if the attribute TERMINAL TYPE does

not have the value SCROLL.
STATUS_ERROR is raised if FILE is not open.

5.3.5.11 Determining intercepted characters

function INTERCEPTED CHARACTERS(FILE : in FILE TYPE)
return CHARACTER LIST;

Purpose:

This function returns the array CHARACTER LIST that indicates the
characters that casnot be read by a process. A value of TRUE
indicates that the character can be read (otherwise FALSE).

Parameters:
FILE is an open terminal handle.
Exceptions:
USE_ERFOR is raised if the attribute FILE KIND does not have

the value TERMINAL.

STATUS_ERROR is raised if FILE is not open.

R PORLIP BN 3R R R I W i 'h o T h TRATET AR Loy Dt pht SS RN GA ght pui S Il PR BN S Il N G Gplang Sal Al A iy

. PROPOSED MIL~STD-CAIS
- 31 OCT 1964

5.3.5.12 Enabling/disabling function key usage
- T function M_MCN_KEYS(ML 1 in FILE TYPE:

b ENABLE : in BOOLEAN);
':' Purpcse)

This procedure establishes whether function key sequences are to be
read as ASCII character sequences or as muubered function keys in a
o terminal read operation. A value of TRUE for ENABLE indicates that
- the function keys should be returned as a matber. A value of FALSE
< indicates that the function keys should be returned as an ASCII
N character sequence.
) Parameters:
.. TERMINAL is an open terminal harndle.
. ENABLE indicates how function keys are to be read.
- Exceptions:
' USE_ERROR is raised if the attribute FILE KIND does not have

the value TERMINAL.

STATUS_ERROR is raised if FILE is not open.

—~ 5.3.5.13 Determining function key usage

\ function FUNCTION KEYS ENABLED(TERMINAL : in FILE TYPE)

.:: return BOOLEAN;

\ Purpose:

. This fimction returnsa TRIE if the function keys are enabled

{otherwise FALSE).

- Parameters:

TERMINAL is an open terminal handle.

.:‘ Exceptions:

- USE_ERROR is raised if the attribute FILE KIND does not

~ have the value TERMINAL.

- STATUS_ERROR is raised if FILE is not open.

<

N-

- 131

N 3-159

PROPOSED MIL~STD-CAIS
31 OCT 1964

o

«la

5.3.5.14 Creating an associatad queus

s in NODE TYPE:
X : in RELATIONSHIP KEY 1= LATEST KEY;
QUEUE_RELATION : in RELATION NAME s= DEPAULT RELATION:
: in TYPE;

H

H

E?
|
:

ttg
E..
Egé
I
eEg
th
g

;
Eggl
3

?ig;

value of CPY (i.e. "(QUEUE TYPE => COPY)") specifies
queus is to be created. A values of MIMIC (i.e. “(
MIMIC)") specifies that a mimic queus is to

relationship ASSOCIATE is creatsd emanating from
the file node identified by the cpen node handle
queue node that is created inherits the ACCESS METHOD
node with which it is asscciated. A DIRECT file
ACCESS_METHOD is DIRECT) cannot be mimiced or copied.

The ATTRIBUTES parameter defines and provides initial values for
attributes of the node (for the use of values of type LIST TYPE, see
Section 5.4. (CAIS LIST UTILITIES). The ACCESS CONTROL parameter

E%z :
i;ggg.s,.
i??s;eQ

Paramsters:

QUEUE_BASE is an cpen handle to the node fram which the primary
relationship to the new node is to eamnate.

QUEUE_KEY is the relationship key of the primary relationship
to be created.

QUEUE RELATION is the relation name of the primary relationship to
be created.

FILE NOCE is an ocpen handle to the file node with which
the queue is to associated.

FORM indicates file characteristics.

ATTRIBUTES defines initial values for attributes in the newly
created node.

132

................

<, ‘,-. o
Catdlal el ara

......................
e

e
Ay PROPOSED MIL~STD-CAIS
:_;. 31 OCT 1984
34

ACCESS OONTRCOL. defines the initial access oontrol information
‘ associated with the created node.
0 LEVEL defines the classification label for the created
! node.
b

Exceptions:

" NAME_ERFOR is raised if a node already exists for the node
- identification given for the queue node to be

created, if this node identification is syntactically
illegal, ACCESS CONTROL parameter is uncbtainable.

STATUS_ERROR is raised if QUEUE BASE is not an cpen node handle,
or if FILE is an open file handle prior to the call.

INTENT VIGLATION is raised if QUEIE BASE was not opened with an

intent establishing the right to append
relationships.

SECURITY VIOCLATION is raised if the operation represents a violation

NN
St

* NN l‘.l

- of mandatcry security rules. SECURITY VILATION is
. raised only if the conditions for other exceptions
. are not present.
Sj Additional Interface:
procedure ASSOCIATE (GJBJE NAME ¢ in NAME STRING;
FILE NOCE : in NODE TYPE:
FORM™ : in LIST TYPE := EMPTY_LIST;
ATTRIBUTES : in LIST TYPE;
ACCESS_CONTROL : in FORM_STRING := "":
LEVEL : in FORM_STRING 1= ")
is
v BASE : NODE_TYPE;
2 OPEN(BASE, BASE NAME(QUEUE NAME), (APPEND RELATIONSHIPS):
y ASSOCIATE(BASE, LAST KEY(QUEUE NAME), LAST RELATION(QUEUE NAME),
: FILE NODE, FORM, ATTRIBUTES, ACCESS CONTROL, LEVEL);
CLOSE(BASE);
exception
. when others =>
- CLOSE(BASE) ;
% end ASSOCTIATE;
N procedure ASSOCIATE (QUEUE PASE @ in NODE TYPE;
. QUEUE_KEY : in RELATIONSHIP KEY :=
; LATEST KEY:
- QUEUE_RELATION : in RELATION NAME :=
. DEFAULT_RELATTON:
: FILE NAME : in NAME STRING;
. FORM in LIST TYPE := EMPTY LIST: .
: ATTRIBUTES 1 in LIST TYPE: N
133 o~
L’ RS
\] e
Q -
\ 3-161
o ey
.; -
e e e T e TS S T A T S APPSR I T e ML S S S AT L TR S S e ~a® . AT
- \ ey ‘-- ‘ "ﬁ X \.‘ ‘ o, ..f"" o v g

b
8

e
P
o

=Y

r.‘ LR
st

astput device (a printer or display). A scroll terminal may be accessed
either as a single file of mode INOUT FILE or as two files: one of mode
IN FIIE (the keyboard) and the othear of mode OUT_FILE (the printer or
display). As keys are pressed cn the scroll terminal keyboard, the
transmitted characters are made available for reading by the
CAIS SCROLL TERMINAL package. As characters are written to the scroll
terminal file, they are displayed cn the output device.

Each of the output devices for a scroll temminal has "positions” in
which printable ASCII characters may be graphically displayed. The

procedure ASSOCIATE (QUEUE NAME : in NAME STRING:
FILE NAME : in NAME STRING:
FORM s+ in LIST TYPE := BMPTY_LIST:
ATTRIBUTES : in LIST TYPE;
ACCESS_CONTROL: in FORM_STRING := "*;
LEVEL s in FORM_STRING = ")
is
FILE NODE : NODE_TYPE;
QUEUE_BASE : NODE TYPE;
OPEN(QUEUE_BASE, BASE_PATH(QUEUE NAME), (APPEND RELATIONSHIPS)):
OPEN(FILE NODE, FILE NAME, (READ ATTRIBUTES));
ASSOCIATE (QUEUE_BASE, LAST KEY(QUEUE NAME),
LAST RELATION(QUEUE_NAME),
FILE NCDE, FORM, ATTRIBUTES, ACCESS OONTROL, LEVEL):
CLOSE(QUEUE_BASE) ;
CLOSE(FILE _NCDE) ;
exception
when cthers =>
CLOSE(QUEUE_BASE);
CLOSE(FILE NODE)
end ASSOCIATE;

5.3.6 Package CAIS_SCROLL_TERMINAL
This package provides the functionality of a scroll terminal. A scroll
terminal

consists of two devices: an input device (keyboard) amd an

134

3-162

.i-. > N e e e N L T N T ——— CR A R S S S i i i " dmaaiaio oy R A NSRS
b

o

-

o

N PROPOSED MIL~STD-CAIS

T 31 OCT 1984

"N

E 4

< positions are arranged into horizontal rows and vertical columns. Each

(e
s

is the position at which the next operation will
active position is said to "advance” if (1) the

position is greater than the row muber of the old position or (2) the
row muber of the new position is the same as the

position, but the new position has a greater colum mumber.

-
‘q' ., :,
o B

A display has a fixed mmber of rows and colums. The rows and colums
of a display are identified by positive mmbers. The rows are
incrementally indexed starting with one at the top of the display. The
colums are incrementally indexed starting with one the of
the display.

. A printer has a fixed matber of colums and might have a fixed number of
rows. The rows are incrementally indexed starting with e after
- cpening the device or perfarming the NEW PAGE (Section 5.3.7.19)
" operation. The colums are incrementally indexed starting with one at
the left side of the printer.

5.3.6.1 Types, subtypes, constants, and exceptions
subtype FILE TYPE is CAIS IO CONTROL.FILE TYPE:

“y 1 It
pY e
LR A R -

subtype FUNCTION KEY DESCRIPICR is
CAIS IO CONTROL.FUNCTION KEY DESCRIPTOR:

MY
.
1’

(AN

subtype TAB ENUMERATICN is CAIS IO CONTROL.TAB_ENUMERATION:

s

LN A

USE_ERROR : exception renames CAIS IO EXCEPTIONS.USE ERROR;:
MODE_ERROR exception renames CAIS_ IO EXCEPTIONS.MODE ERROR;
STATUS_ERROR

| exception renames CAIS 10 EXCEPTIONS.STATUS
LAYOUT_ERROR
DEVICE_ERFOR

a

exception renames CAIS IO EXCEPTIONS.LAYOUT ERROR

exception renames CAIS IO EXCEPTIONS.DEVICE ERROR

e 60 o8 oo
-8 = Wy

= cbtain information about function keys read fram a
— TAB ENUMERATION is used to specify the type of tab stop to be set.
USE ERFOR is raised if an operation is attempted that is not possible

135 9

" 3-163

Ay Ayt _d '.\.iz.'.i.s m

¢

AL)

| TAag

)] - LA l !: hl d ." A AN W .'_l! Yela (‘:- MO m "'rrT:."‘,

e

PROPOSED MIL~STD-CAIS
31 OCr 1984

5.3.6.2 Setting the active position

procedure SET POSITION (TERMDNAL : in FILE TYPE;
POSITION : in POSITION TYPE):

m-‘mmm:cuwpdﬁa:wﬂnm
POSITION in the terminal file given by TERMINAL.

Parameters:
TERMINAL is an cpsn handle on a terminal file.
POSITION is the new active position in the terminal file.
Exceptions:
USE_ERFOR is raised if a valus of the attribute TERMINAL TYPE
is not SCROLL.
MODE_ERROR is raised if TERMINAL is of mode IN FILE.

STATUS ERROR is raised if TERMIMAL is not cpen.

LAYOUT ERFOR is raised if the position doss not exist on the
termiral or the position precedes the active
position.

DEVICE_ERROR is raised if an imput or cutput cperation carmot be
cmpleted because of a malfunction of the underlying

system.

Additional Interface:
E:Mm SET_POSITION (POSITION : in POSITIONM TYPE)
begin

SET_POSITION(CURRENT CUTPUT, POSITION);
end SET_POSITION;

5.3.6.3 Determining the active position
function POSITION (TERMIMAL : in m_m)
return POSITION TYPE:
Purposes
This fimction returns the active position of TERMIMAL.

Parameters:
TERMINAL is an open handle on a terminal file.

Exceptions:

136

30 sl

ORI RS

o

AN

!
)

LROZLL A

b » -
o | PRURIP L W

At AL A

4

DEVICE_ERROR

PROPOSED MIL~STD-CAIS
31 oCT 1984

is raised if a value of the attribute TERMINAL TYPE
is not SCROLL.

is raised if TERMINAL is of mode IN FILE.
is raised if TERMINAL is not open.

is raised if an input or output operation cannot be
completed because of a malfunction of the underlying

system.

Additional Interface:

function POSITION
return POSITION TYPE

is
begin

return POSITION(CURRENT_CUTPUT):

end POSITION:

5.3.6.4 Determining the size of the terminal

function SIZE (TERMINAL : in FILE TYPE)
return POSITION TYPE;

Purpowse:

This function returns the maximm row and maximm oolum of
TERMINAL. A value of zero for the row mmber indicates that the row
mmber is unlimited.

Parameters:
TERMINAL

Exceptions:
USE ERROR

STATUS ERROR

DEVICE_ERFOR

is an open handle on a terminal file.

is raised if a values of the attribute TERMINAL TYPE
is not SCRALL.

is raised if TERMINAL is of mode IN FILE.

is raiged if TERMIMAL is not open.

is raised if an input or output operation cannot be
campleted because of a malfinction of the underlying

m.

Additional Interface:

function SIZE

return POSITION TYPE

is
begin

137

3-165

e

£v.r.

.

Ny

¥

its

~

-

o
[SE 2

—

e

CrY

£,

T

31 oCT 1964

return SIZE(CURRENT OUTPUT):
end SIZE;

5.3.6.5 Setting a tab stop

procedure SET TAB (TERMIMAL : in FILE TYPE
I :mm_nun’m'rm s= HORLZONTAL) :

'mia,;tocadm:e establishes a horizontal/vertical tab stop at the
colum/row of the active position.

Parameters:

TERMINAL is an open handle on a texminal file.

Exceptions:

USE_ERFOR is raised if a value of the attribute TERUNAL TYPE
is not SCROLL or the mmber of rows for the terminal
is unlimited.

MOCE ERROR hnildifmhofmm_m.

STATUS ERROR is raised if TERMIMAL is not open.

DEVICE ERRCR is raised if an input or output operation cannot be
canpletad because of a malfunction of the underlying
systeam.

Additional Interface:

procedure SET_TAB (KIND : in TAB EMUMERATION := HORIZOMTAL)
is

SET_‘TAB(CURRENT INPUT, KIND):
end SET TAB;

5.3.6.6 Clearing a tab stop

procedure CLEAR TAB (TERMINAL : in FILE TYPE;
KIND ¢ in TAB ENUMERATION := HORIZONTAL):

3
This procedure removes a horizontal/vertical tab stop from the
colum/row of the active position.

Paramgters:
TERMINAL is an open hardle on a terminal file.

Exceptions:

. oy (N et By v St - g, 5, %P - .] - oot ” "
hn Pt o N Nt By d ML RRAYER - * e LATORAVAL S e _arlle 9L ol N vew; QUL A o/ s) - o B st TR Sy [op v dapdo Then Diah, i Sy NP S,

’
¥
>
&

N PROPOSED MIL~-STD-CAIS 3
) 31 OCT 19684)
Z\

4) |

USE_ERFOR is raised if a value of the attribute TERMINAL TYPE -
is not SCROLL or there is no tab stop of the

X designated type at the active position.
S - MODE_ERFOR is raised if TERMINAL is of mode IN FILE. %
)

' STATUS_ERROR is raiged if TERMINAL is not open.

v ad
N DEVICE_ERROR is raised if an input or cutput operation cannot be !
o~ canpleted because of a malfunction of the underlying e
> systen.

a =
- N
» Additional Interface: X
' procedure CLEAR TAB (KIND : in TAB ENUMERATION 3= HORIZONTAL) -
8 i %
X CLEAR TAB(CURRENT CUTPUT, KIND);

- end CLEAR TAB; s
4 - o
g ™
: 5.3.6.7 Advancing to the next tab position A

. procedurs TAB (TERMINAL : in FILE TYPE:
) KIND ¢ in TAB ENUMERATION := HORIZONTAL:

bt COUNT : in POSITIVE := 1); -
Purposes -
", This procedure advances the active position COUNT tab stops. -
-, Horizontal advancement causes a change in only colum number of the ’:::
5 active position. Vertical advancement causes a change in only the f
: row mmber of the active position.
Parameters: -
- TERMINAL is an open handle on a terminal file. v
y COUNT is a positive integer indicating the mumber of tab e
9 stops the active position is to advance. o
] Exceptions:
- USE_ERFOR is raised if a value of the attribute TERMINAL TYPE ."-
- is not SCRALL. L
- MDE_ERROR is raised if TERMDNAL is of mode IN FILE. i
o STATUS_ERROR is raised if TERMINAL is not open. =
. DEVICE_ERFOR is raised if an input or output operation cannot be -
conpleted because of a malfunction of the underlying
gystem. -
A Aditional Interface: WY
w1
N 139
% "
.: iq
X 3-167

e

IOPOH _‘» D

g= T T

4

-
s e e
A A

e TR T TR SeT TE

—_—

8

L]

" Q.}-'~ s- .- -‘-*_- :‘- AR :';U."T'?}:'.“.".f‘ :.\

31 OCT 1964

TAB (KIND : in TAB ENUMERNTION = HORIZOMTAL;
procedre COT : in POSTTIVE 1= 1)
is

TAB(CURRENT QUTPUT, KIND, COUNT);
end TRB;

5.3.6.8 Sounding a terminal bell
procedure BELL (TERMIMAL : in FILE TYPE):

Purpose:

This procedure signals the bell (bseper) on the terminal.

Paramaters:

TERMINAL is an cpen handle on a termimal file.

Exceptions:

USE_ERROR is raised if a valus of the attribute TERMINAL TYPE

is not SCROLL.
MODE,_ERFOR is raised if TERMIMAL is of mode IN FILE.

STMIUS_ERROR is raised if TERMINAL is not open.
DEVICE_ERROR is raised if an input or ocutput operation cannot be

campletsd because of a malfunction of the underlying
system.

Additional Interface:
procedure BELL
is

BELL (CURRENT OUTPUT)
end BELL;

5.3.6.9 wWriting to the terminal

procedure PUT (TERMINAL : in FILE TYPE;
ITEM t in GHARACTER):

H
This procedure writes a single character to the cutput device and
advances the active position by one position.

Parameter:
TERMINAL is an open handle on a terminal file.
ITEM is the character to be written.

140

3-168

LR B AT
.
R LI

. .
Y,
P, PROPOSED MIL~STD-CAIS o
A, 31 OCT 1964 e
.
‘ Exceptions:
: USE_ERROR is raised if a value of the attribute TERMINAL TYPE
A is not SCRALL.
S
P MODE_ERROR is raised if TERMINAL is of mode IN_FILE. A
& *
. STATUS_ERROR is raised if TERMINAL is not open.
. DEVICE ERROR is raised if an input or ocutput operation cannot be :
- campleted because of a malfunction of the underlying
) system. o
- "1
- Additional Interface: &
- procedure PUT (ITEM : in CHARACTER) .-
: is -
-3
- PUT(CURRENT_OUTPUT, ITEM);
e end PUT; r;
- procedixe PUT (TERMINAL : in FILE TYPE; w
TTEM : in STRING)
5 is %
. for INDEX in TTEM'FIRST .. ITEM'LAST loop -
N PUT(TERMINAL, ITEM(INCEX)); .
end loop: -
end PUT: -
" procedure PUT (ITEM : in STRING) -
.- is L)
- begin S
- m(am_amrr. ITEM);
end PUT; P
- Notes: .
y After writing the character in the rightmost position of a row, the
2 active position is the first position of the next row. -3
: N
= 5.3.6.19 Setting the B3O on a terminal
F
5 procedure SET BCHO (TERMINAL : in FILE TYPE; 2l
. ™ : in BOCLEAN := TRUE);
. : -
This procedure establishes whether characters entered at the
terminal keyboard are echoed to its associated output device. When
- T is given as TRUE, each character entered at the keyboard is
- achoed to the ocutput device. When 10 is given as FALSE, characters .
entered at the keyboard are not echosd to its associated output ..
device.
-, 141)
.. ".:\
.. 3-169 -
-: L T

R s
L

o
.
L

AL

WO |

g TANCC U

31 OCT 19684

STATUS_ERROR

DEVICE_ERRCR

is an open handle on a terminal file.
indioates the new value of EXHO.

is raised if a value of the attribute TERMINAL TYPE
is not SCROLL.

is raised if TERMOMAL is of mode QUT FILE or
APPEND_FILE.

is raised if TERMINAL is not cpen.
is raised if an input or cutput operation cannot be

campleted because of a malfunction of the underlying
system.

Additional Interface:

procedure SET BCHO (T0 : in BOOLEAN := TRUE)

is

SET_BCHO(CURRENT _INPUT);

end SET_BCHD;

5.3.6.11 Determining the BCHO on a terminal

function ECHO (TERMINAL : in FILE TYPE) return BOOLEAN;

Purpose:

This function returns whether echo is enabled (TRUE) or disabled

(FALSE).

Parameters:
TERMINAL

Exceptionss
USE_ERROR

MODE_ERROR

STATUS ERFOR

DEVICE_ERROR

is an open handle on a terminal file.

is raised if a value of the attribute TERMINAL TYPE
is not SCROLL. -

is raised if TERMINAL is of mode OUT FILE or
APPEND FILE.

is raised if TERMINAL is not open.

is raised if an input or output operation cannot be
campleted because of a mlfunction of the underlying
system.

Additional Interface:

142

3~-17¢

S0

Saa O

PR

» PO -
o ¢ 2 A4

A A

’

“ 9 .
TP

‘SN PLIN A

>
.

LR A Sl An "9y “RAg

PROPOSED MIL~STD-CAIS
31 oCr 1984

function BCHO return BOOLEAN

is

return BCHO(CURRENT INPUT):

end ECHD;

5.3.6,12 Deternmining the mmber of function keys

function FUNCTION_KEYS(TERMINAL : in FILE TYPE)
return NATURAL;

Purpose:
This function returns the maximm function key identifier that can
be returned by a GET operation in the temminal file given by

TERMINAL.

Parameters:
TERMINAL

Exceptions:
USE_ERROR
MODE_ERROR
STATUS_ERROR
DEVICE ERROR

is an open handle on a terminal file.

is raised if a value of the attribute TERMINAL TYPE
is not SCROLL.

is raised if TERMINAL is of mode OUT FILE or
APPEND FILE.

is raised if TERMINAL is not open.

is raised if an input or output operation cannot be
campleted because of a malfunction of the underlying

system.

Additional Interface:
function FUNCTION KEYS return NATURAL

is
begin

return FUNCTION_KEYS(CURRENT INPUT);:
end FUNCTION KEYS;

143

RN N I S0 3, o A T e T e T

3~-171

-
J

N
A

[1 O

O "._ I-.‘n‘: l E\.

a0 |

LMo
IR
ot

PROPOSED MIL~STD-CAIS
31 oCTr 1984

5.3.6.13 Reading a character frum a terminal

(TERMNAL : in FILE TYPE:
ITEM T out CHARACTER:
KEYS : in out FUNCTION KEY DESCRIPTOR);

Purpose:
This procedure reads either a single character into ITEM or reads
a single function key into KEYS.

Parameters:
TERMINAL is an open handle on a terminal file.

ITEM is the character that was read.
KEYS describes the function key that was read.

Exceptions:
USE_ERFOR is raised if a value of the attribute TERMINAL TYPE

is not SCROLL.
MODE_ERROR is raised if TERMINAL is of mode IN FILE.
STATUS_ERROR is raised if TERMINAL is not open.

DEVICE_ERROR is raised if an input or cutput operation cannot be
campleted because of a malfunction of the underlying
system.

Additional Interface:

(ITEM 3 oat CHARACTER;
KEYS : in out FUNCTION KEY DESCRIPTOR)
is

GET(CURRENT_OUTPUT, ITEM, KEYS):
end GET;

5.3.6.14 Reading all available characters fram a terminal

procedure GET(TERMINAL : in- FILE TYPE;
ITEM : aut STRING;
LAST s out NATURAL;
KEYS ¢ in out FUNCTIQN KEY DESCRIPTOR):

Purpose:

This procedure successively reads characters and function keys into
ITEM and KEYS until either all positions of ITEM are filled or there
are no more characters buffered for the terminal. Upon completion,
LAST contains the index of the last position in ITEM to ocontain a

144

N - - - . L S T T L VRN Teat et et -
-t o I} PR) . - 3 . LRI A S A S P RO PO ISR A
PO S VAR S M W WL VAP WP U S W S N W g Y

3-172

LA A A A st

l1

PROPOSED MIL~STD-CAIS
31 OCT 1984

character that has been read. In addition, the function keys that
were read are entered into KEYS.

Parameters:
TERMINAL is an open handle on a terminal file.
ITEM is the characters that were read.
LAST is the position of the last character read in ITEM.
KEYS describes the function keys that were read.
Exceptions:
USE_ERFOR is raised if a value of the attribute TERMINAL TYPE
is not SCROLL.
MODE_ERROR uralsedlfmwofmdem_m

STATUS_ERROR is raised if TERMINAL is not open.

CEVICE_ERROR is raised if an input or ocutput operation cannot be
canpleted because of a malfunction of the underlying
system.

Additional Interface:

procedure GET(ITEM : out STRING;
LAST : out NATURAL:
KEYS : in out FUNCTION KEY DESCRIPTOR)
is
GET(CURRENT INPUT, ITEM, LAST, KEYS):
end GET;
Notes:

If there are no elements available for reading fram the terminal,
then IAST has a wvalue one less than ITEM'FIRST and
FUNCTION KEY COUNT(KEYS) is equal to zero.

5.3.6.15 Determining the mmber of function keys that were read

function Hmm_m_m(ms : in EIMIQI_KEY_DESCRIP!DR)
return NATURAL;

Purpose:
This function returns the muber of function keys described in KEYS.

Parameters: .
KEYS is the function key descriptor being queried. -

Exceptions: none

145

3-173

e | e re

’
‘.

)
+
)

m m L 3] X Fo ., '] ICYON f‘;- Bt m e

PROPOSED MIL~STD-CAIS
31 OCT 1964

5.3.6.16 Determining function key usage

procedure FUNCTION KEY(KEYS s in
FUNCTION_KEY_DESCRIPIOR;

INDEX s in FOSITIVE;
KEY IDENTIFIER 3 out POSITIVE;
FOSITION] cut NMATURAL);

m-smn returns the identification mwmber of a function key
and the position in the string (read at the same tims as the
)

function keys) of the character following the function key.
Parameters:

KEYS describes a sequence of function keys.
INDEX is the function key sequence to be queried.

KEY IDENTIFIER is the identification muber of a function key.

POSITION is the position of the character read after the
function key.

]
CONSTRAINT ERROR is raised if INDEX is greater than
FUNCTION_KEY_COUNT(KEYS).

IS

5.3.6.17 Determining the name of a function key
procedure FUNCTION KEY NAME(TERMINAL t in PILE TYPE:
KEY IDENTIFIER : in
Y e : out STRINGs
LASY] axt POSITIVE):

m:mum returns (in KEY NAME) the neme of the

sequence designated by KEY IDENTIFIER. It also returns the index of
the last character of the function key name in DNDEX.

|

TERMINAL is an opan handle on a terminal file.

KEY IDENTIFIER is the identification mmber of a function key for
the terminal associated with FILE.

KEY_NAME is the name of the key designated by KEY_IDENTIFIER.

LAST is the position in KEY NAME of the last character of
the function key name.

T O O N S

3-174

USE_ERROR

MODE_ERFOR
STATUS_ERFOR

DEVICE ERROR

is
begin

Purpose:

TERMINAL
CUNT

Exceptions:
USE_ERROR

STATUS_ERFOR
DEVICE_ERFOR

MARSRERL B

PROPOSED MIL~STD-CALS
31 OCT 1984

is raised if a value of the attribute TERMINAL TYPE
is not SCROLL.

is raised if TERMINAL is of mode IN FILE.
is raised if TERMINAL is not cpen.

is raised if an input or cutput operation cannot be
completed because of a malfunction of the underlying

system.

CONSTRAINT ERROR is raised if the value of KEY_ IDENTIFIER is greater

than FUNCTION KEYS(TERMINAL).

Additional Interface:

FINCTION KEY NAME

(KEY_IDENTIFIER : in POSITIVE;

KEY_NAME
LAST

: out STRING;
1 out POSITIVE)

FUNCTION KEY NAME(CURRENT INPUT,

KEY_IDENTIFIER, KEY NAME, LAST);

end FUNCTION KEY NAME:

5.3.6.18 Advancing the active position to the next line
procedure NEW LINE (TERMINAL : in FILE TYPE;

COUNT's in POSITIVE = 1);

This procedure advances the active position to colum one, COUNT lines
after the active position.

is an gpen handle on a terminal file.
is the mmber of lines to advance.

is raised if a value of the attribute TERMINAL _TYPE
is not SCROLL.

is raised if TERMINAL is of mode IN FILE.
is raised if TERMINAL is not open.
is raised if an input or ocutput cperation cannot be

carpleted because of a malfunction of the underlying
system.

147

3-175

£

¥

.

“ a

AP

Sl L. PO L'L'

e Y

-rr

AN

[

L 'o'o_".

. ¢

e
»

rY
| P

————

O

31 OCT 1984

Additional Interface:
procedure NEW LINE (COUNT: in POSITIVE := 1)
is

NEW_LINE(CURRENT_OUTPUT, COWNT);
end NEW LINE;

5.3.6.19 Advancing the active position to the next page
procedure NEW PAGE (TERMINAL : in FILE TYPE);
Purpose:

This procedure advances the active position to the first colum of the
first line of a new page.

Parameters:

TERMINAL is an open handle on a terminal file.

Exceptions:

USE_ERFOR is raised if a value of the attribute TERMINAL TYPE
is not SCRL.

MODE_ERROR is raised if TERMINAL is of mode IN FILE.

STATUS_ERRCR is raised if TFRMINAL is not open.

DEVICE_ERROR is raised if an input or cutput operation cannot be
campletsd because of a malfunction of the underlying
system.

Additional Interface:
procedure NEW PAGE
is

NEW_PAGE (CURRENT_OUTPUT) ;
end NEW_PAGE:

148

3-176

Ll N L N R N T T I TP IS wEr > T w

colums are incrementally indexed starting with at left side
the display. '
b
L
5.3.7.1 Types, subtypes, constants, and exceptions
subtype FILE TYPE is CAIS IO CONTROL.FILE TYPE; o
subtype FUNCTION KEY DESCRIPTOR is
CAIS_IO CONTROL.FUNCTION KEY DESCRIPTOR; -
o
LA
subtype POSITION TYPE is CAIS_IO_CONTROL.POSITION TYPE: -
subtype TAB_ENUMERATION is CAIS IO CONTROL.TAB ENUMERATION: o
type SELECT ENUMERATION is -
(FRoM_ACTIVE POSITION TO_END, "
FROM_START TO_ACTIVE_POSITION, ‘.
ALL _POSITIONS); L
type GRAPHIC RENDITION ENUMERATION is re
(PRIMARY_RENDITION, o~
BOLD, =
FAINT,
UNDERSCORE, =
SLOW BLINK, 3
RAPID BLINK, T
REVERSE_IMAGE); ,
type GRAPHIC_RENDITION ARRAY is array(GRAPHIC RENDITION ENUMERATION) R
149 =
37
o
: '- (ﬁ-\: SR ":: FAS AT .,.~.'-’.'- e _J..}\}3;.-.’.-.;.-.;._.'.-_.:-_,‘-.;_-.:_\:_-_:_:.:_-_:.\:_ _.\.' . PR Yo RN .%',{

B e g

5.3.7 Package CAIS_PAGE TERMINAL

This package provides the functionality of a page terminal. A

terminal consists of twc devices: an input device (keyboard) and an
output device (display). A page terminal may be accessed either as a
single file of mode INOUT FIIE or as two files: one of mode IN FILE
(the keyboard) and the other of mode OUT_FILE (the printer or display).
As Keys are pressed on the page terminal keyboard, the transmitted
characters are made available for reading by the CAIS PAGE TERMINAL
package. As characters are written to the page terminal file, they are

displayed on the cutput device.

§

9
EE
;

i a
The active position on the display of a page terminal
which the next cperation will be performed. The active position

ion is said

to advance if (1) the row mmber of the new position is greater than the

row mmber of the old position or (2) the row mmber of the new position

is the same as the row mmber of the old position, but the new position
has a greater colum rmber.

The rows and colums

of a display are identified by positive mmbers. The rows
one

ZEY

ed

TP

Y

5

i

et d

e

oy

oo au gnl
Gyt

o AR

31 oCr 1964

of BOOLEAN:

DEFAULT RENDITION : constant GRAPHIC_REMDITION ARRAY
s= (PRIMARY_RENDITION => TRUE, others => FALSE):

5.3.7.2 Setting the active position

procedure SET POSITION (TERMINAL : in FILE TYPE;
POSITION : in POSITION TYPE);

Purpose
'mi.sgptocadm moves the active position to the specified POSITION
on the display of the terminal.

Parameters:
TERMINAL is an open hardle on a terminal file.
POSITIN is the new active position for the terminal.
Exceptions:
USE_ERROR is raised if a value of the attribute TERMINAL TYPE
is not PAGE.
MODE_ERROR hniledifmhofmdom_m.

STATUS_ERROR is raised if TERMINAL is not open.
LAYOUT ERROR is raised if the position does not exist on the

150

N T R TG, S i, BT I S 1 M B Wt A Pty L g L e LA LA LATY K A7 PO LI et ALY ot (L as it I i

N Y
o
)
" r
N PROPOSED MIL~STD~CAIS
n 31 ocT 1984
terminal or the position precedes the active >
.‘: position.
N DEVICE_ERROR is raised if an input or cutput operation canmnot be F
N campleted because of a malfunction of the underlying E
.‘.
systen.
. Additional Interface: £
- procedure SET_POSITICN (POSITICN : in POSITION TYPE) ‘
is -
4
SET_POSITION(CURRENT_CUTPUT, FOSITION): v
end SET_POSITION;
. 5.3.7.3 Detemmining the active position .
- 3
ot function POSITION (TERMINAL : in FILE TYPE) <
& return POSITION_TYPE; .
e , Purpose: i
- This function returns the active position of TERMINAL.
- Parameters: i
3 TERMINAL is an open handle on a terminal file. -
5 Exceptions: oA
. USE_ERFOR is raised if a value of the attribute TERMINAL TYPE -
. is not PAGE. ' v
MODE_ERROR is raised if TERMINAL is of mode IN FILE. :
STATUS_ERFOR is raised if TERMINAL is not cpen.
_',. DEVICE ERROR is raised if an input or output operation camnot be =
- campleted because of a malfunction of the underlying o
- system.
L‘-‘
o function POSITION return POSITION TYPE
: is >~
y begin -
) return POSITION(CURRENT OUTPUT) ~
N end POSITION; .
: 3
- Y
. ~
& 151 .
o ‘e
) -
3-179

PROPOSED MIL~STD-CAIS
31 OCT 1984

5.3.7.4 Determining the size of the terminal

function SIZE (TERMINAL : in FILE TYPE)
return POSITION TYPE;

Purpose:
This function returns the maximm row and maximm colum of the
terminal.

Parameters:

TERMINAL is an open handle cn a terminal file.

Exceptions:

USE_ERROR is raised if a value of the attribute TERMINAL TYPE
is not PAGE.

MODE_ERFOR is raised if TERMINAL is of mode IN FILE.

STATUS ERROR is raised if TERMINAL is not cpen.

DEVICE ERROR is raised if an input or cutput operation carnot be
campleted because of a mlfunction of the underlying
system,

Additional Interface:
finction SIZE
return POSITION TYPE
is
return SIZE(CURRENT OUTPUT);
emd SIZE;
5.3.7.5 Setting a tab stop

procedure SET TAB (TERMINAL : in PILE TYPE;
KIND 3 in TAB_ENUMERATION := HORIZONTAL):

Purpose:
This procedure establishes a horizontal/vertical tadb stop at the
colum/row of the active position.

Parameters:
TERMINAL is an open handle on a terminal file.
Exceptions:
USE_ERROR is raised if a value of the attribute TERMINAL TYPE

is not PAGE.
MODE_ERFOR is raised if TERMINAL is of mode IN FILE.

STATUS_ERROR is raised if TERMINAL is not open.

DEVICE _ERROR is raised if an input or output operation cannot be
campleted because of a malfunction of the underlying
system.

Additional Interface:
procedure SET_TAB (KIND s in TAB_ENUMERATION
s= HORIZONTAL)
i‘ I3
SET_TAB(CURRENT INPUT, KIND);
end SET TAB;

5.3.7.6 Clearing a tab stop

procedure CLEAR TAB (TERMINAL : in FILE TYPE;
KIND : in TAB ENUMERATION := HORIZONTAL):

Purpose:
This procedure removes a horizontal/vertical tab stop from the
colum/row of the active position.

Parameters:
TERMINAL is an open handle on a terminal file.

Exceptions:
is raised if a value of the attribute TERMINAL TYPE
is not PAGE or there is no tab stop of the designated
type at the active position.

MODE ERFOR is raised if TERMINAL is of mode IN FILE.

STATUS_ERROR is raised if TERMINAL is not open.

CEVICE ERROR is raised if an input or output operation cannot be
campleted because of a malfunction of the underlying
system.

Additional Interface:

procedure CLEAR TAB (KIND : in TAB ENUMERATION := HORIZONTAL)
is

CLEAR TAB(CURRENT OUTPUT, KIND);:
end CLEAR TAB;

‘s '.A ..l ! E’ %

) . o

O
Y »

-y
Joe .
[REARN

=1

-

v, o
0

rl

-
i}
«'s

-
el
-

-
0 |

« ;‘c.,

:';a "‘" STeTe Y
B

~

ooy
« 0 8

PROFOSED MIL~STD-CAIS
31 OCT 1964

5.3.7.7 Advancing to the next tab position

procedure TAB (TERMIMAL : in FILE TYPE;
KIND s in TAB ENUMERATION := HORIZONTAL:
CQOUNT ¢ in POSTTIVE = 1);

Purpose:
This procedure advances the active position CXUNT tab stops.
Horizontal advancement causes a change in only colum mmber of the
active position. Vertical advancemsnt causes a change in only the
row manber of the active position.

Parameters:

TERMINAL is an open handle on a terminal file.

QOUNT is a positive integer indicating the mmber of tab
stops the active position is to advance.

Exceptions:

USE_ERROR is raised if a value of the attribute TERMINAL TYPE
is not PAGE.

MOCE_ERFOR is raised if TERMINAL is of mode IN FILE.

STATUS_ERROR is raised if TERMINAL is not open.

DEVICE ERROR is raised if an input or ocutput operation cannot be
campleted because of a mlfunction of the underlying
system.

Additional Interface:
procedure TAB (KIND : in TAB PNUMERATION := HORIZONTAL;
‘e QOUNT : in POSITIVE = 1

TAB(CURRENT CUTPUT, KIND, COUNT):
end TAB

5.3.7.8 Sounding a terminal bell
procedure BELL (TERMINAL : in FILE TYPE);

3
This procedure signals the bell (beeper) on the terminal.
Parameters:
TERMINAL is an open handle on a terminal file.
Exceptions:
USE_ERROR is raised if a value of the attribute TERMINAL TYPE
is not PAGE.
154

3-182

"t Al e & Aa ba B Sl Sl S A s I R ey

is raised if TERMINAL is of mode IN FILE.
is raised if TERMINAL is not open.

is raised if an input or output operation camot be
canpleted because of a malfunction of the underlying

system.
Aditional Interface:
procedure BELL
is
BELL(CURRENT_OUTPUT);
end BFLL;

5.3.7.9 writing to the terminal
procedure PUT (TERMINAL : in out FILE TYPE;
ITEM t in CHARACTER) ;

procedure writes a single charactar to the output device and
the active position by one position.
is an open handle on a terminal file.
is the character to be written.
is raised if a value of the attribute TERMINAL TYPE
is not PAGE.
is raised if TERMINAL is of mode IN FILE.
is raised if TERMIMAL is not apen.

is raised if an input or autput operation cannot be
campleted because of a malfunction of the underlying

systam.
Additional Interface:

ﬁmdmm(m:inm)

PUT(CURRENT_CUTFUT, ITEM):
end PUT;

procedure PUT (TERMINAL : in FILE TYPE
ITEM :msmm:n '
is

begin

- . V% te ittt e vy -
. \.‘. .\.-'.'.-: ..'.',:- ..L.u (Y

TRE N N

)
.

4

;v v
i

Ly
-y
o

31 oCT 1984

for INDEX in ITEM'FIRST .. ITEM'LAST locp
PUT(TERMINAL, ITEM(INDEX));

erd loop;
end PUT;
procedure PUT (ITEM : in STRING)
is
PUT(QURRENT OUTPUT, ITEM):
end PUT;
Notes:

After writing the character in the rightmoat position of a row, the
active position is the first poaition of the next row.

5.3.7.18 Setting the ECHO on a terminal

procedure SET BCHO (TERMINAL : in FILE TYPE;
™ t in BOOLEAN := TRUE);

Purpose:
This procedure establishes whether characters entered at the
terminal keyboard are echoed to its associated output device. When
TO is given as TRIUE, each character entered at the keyboard is
echoed +o the output device. When TO is given as FALSE, characters
entered at the keyboard are not echoed to its associated output
device.

Parameters:
TERMINAL is an open handle on a terminal file.
TO indicates the new value of ECHD.
Exceptions:
USE_ERROR is raised if a value of the attribute
TERMINAL _TYPE
is not PAGE.
MODE_ERROR i.sniuedifmisofmdaarr_m
or
APPEND FILE.

STATUS_ERROR is raised if TERMINAL is not open.
DEVICE ERFOR is raised if an input or output operation camnot

capleted because of a malfunction of the
underlying

system.

*
)

L N Wy

Ed

...................

31 OCT 1964
procedure SET EGHO (TO : in BOOLEAN := TRUE)
is

SET_ECHO(CURRENT INPUT, TO);
end SET_BCHD;

5.3.7.11 Determining the B on a tenminal

finction XD (TERMINAL : mm_m:-uznmm:
Purpose:

This function returns whether echo is enabled (TRE) or disabled
(FALSE).

Paramsters:
TERMINAL is an open handle on a terxinal file.
L
USE_ERROR is raised if a value of the attribute TERMINAL TYPE
is not PAGE.
MOCE_ERROR is raised if TERMINAL is of mode OUT FILE o
APPEND FILE.

STATUS ERROR is raised if TERMINAL is not open.

DEVICE ERFOR is raised i n input or cutput Jperation cannot be
campleted because of a malfunction of the underlying
system.

Additional Interface:

function BCHO return BOCLEAN
is

return BCHO(CURRENT INPUT);:
end BCHO;

5.3.7.12 Determining the mmber of finmction keys

mmmw_m(m s in FILB__T!PE)
retarn NATURAL;
. e
This finction returns the maximm function key identifier that can -

be returned by a GET operation in the terminal file given by
TERMINAL.

Yarameters:
TERMINAL is an cpen handle on a terminal file.

157

..............................

-1y

.,

DS |

.........

PROPOSED MIL~STD-CAIS

31 oCr 1984

Exceptions:
USE_ERFOR

STATUS_ERROR

DEVICE_ERRCR

is raised if a value of the attribute TERMINAL TYPE
is not PAGE.

is raised if TERMINAL is of mode OUT FIIE or
APPEND_FILE.

is raised if TERMINAL is not open.
is raised if an input or output operation cannot be

cnpleted because of a malfunction of the underlying
system.

Additional Interface:

function FUNCTION KEYS return NATURAL

is
begin

return FUNCTION KEYS(CURRENT INPUT);
end FUNCTION KEYS;

5.3.7.13 Reading a character frum a terminal

procedure GET(TERMINAL : in FILE TYPE

Purpose:

TTEM : aut CHARACTER,
KEYS : in out FUNCTION_KEY_ DESCRIPTOR):

This procedure reads either a single character into ITEM or reads a
single function key into KEYS.

Parameters:
TERMINAL

ITEM
KEYS

Exceptions:
USE_ERROR

MODE ERROR

STATUS ERFOR

DEVICE_ERROR

is an open handle on a terminal file

is the character that was read.

describes the function key that was read.

is raised if a value of the attribute TERMINAL TYPE
is not PAGE.

is raised if TERMINAL is of mode IN FILE.

is raised if TERMINAL is not open.

is raised if an input or output operation cannot be

oampl.eted because of a mlfunction of the underlying
system.

Additional Interface:

158
N e A A A P e T AT TIPSR I R S R
A Y A e T &:n“:".‘:."_“‘.n\;\:i_;\i-) st AN s et st '.'.h-"‘::-;‘.'l_‘.‘

’l
5
7 PROPOSED MIL-STD-CAIS ‘
31 OCT 1984 R
.’:
"'
’ procedure GET(ITEM s out CHARACTER;
: KEYS : in out FUNCTION KEY DESCRIPTOR)
X is
- begin -
- GET (CURRENT_OUTPUT, ITEM, KEYS); by
L end GET; :
- 5.3.7.14 Reading all available characters fram a terminal
:; procedure GET(TERMINAL : in FILE TYPE:
- TTEM : out STRING:
o LAST H out NATURAL;
KEYS s in out mxw_m_mscmm):
o Purpose:
This procedure successively reads characters and function keys into
TTEM and KEYS until either all positions of ITEM are filled or there
N are no more characters buffered for the terminal. Upon completion,
TR LAST contains the index of the last position in ITEM to ocontain a
character that has been read. In addition, the function keys that
were read are entered into KEYS.
- Parameters:
TERMINAL is an open handle on a terminal file.
ITEM is the string that was read.
~ LAST is the position of the last character read in ITEM.
KEYS describes the function keys that were read. N
- Exceptions:
USE_ERROR is raised if a value of the attribute TERMINAL TYPE
A is not PAGE.
= MODE_ERROR is raised if TERMINAL is of mode IN FILE.
i STATUS ERROR is raised if TERMINAL is not open.
DEVICE _ERROR is raised if an input or cutput operation cannot be
x— carpleted because of a malfunction of the underlying
R m.
- Additional Interface:
- procedure GET(ITEM : out STRING;
LAST] out NATURAL;
>, KEYS : in out nncncn_m_mzm)
o is
N begin
- GET(CURRENT_INPUT, ITEM, LAST, KEY)
-~ o GET:;
»
.:; 159
e P
- 3-187

thean IAST has a valus one less
QOUNT(KEYS) is equal to zero.

§
A

r 5.3.7.15 Determining the mmber of function keys that were read

function FUNCTION KEY COUNT(KEYS : in FUNCTION KEY_DESCRIPTOR)
return NATURAL;

d .
Elj Purpose:
This function returns the mmber of function keys described in KEYS.

Parameters:
KEYS is the function key descriptor being queried.

Exceptions: ncne

———e—
e e -
e,

5.3.7.16 Determining function key usage

‘s
e procedure FUNCTION KEY(KEYS t in
. FUNCTION KEY DESCRIPTOR;
y INDEX t in POSITIVE:
KEY IDENTIFIER : out POSITIVE:
POSTTION 3 out. NATURAL):
. - Purpose:
iy This procedure returns the identification mmber of a function key
r and the position in the string (read at the same time as the
) function keys) of the character following the function key.
) ! Parameters:
St KEYS describes a sequence of function keys.
- INDEX is the function key sequence to be queried.
e KEY_IDENTIFIER is the identification mumber of a function key.
S POSITION is the position of the character read after the
PR ﬁm kq‘
_ Exceptionss
. CONSTRAINT ERROR is raised if INDEX is greater than
o FUNCTION _KEY COUNT(KEYS).
' p',:
-
N
2] ra
‘ +
f 160
:
e \°
o 3‘1@
¢
: |
- '. “
'~.'~'I.'f"e".-"a_-" N A N Y I N N R N a2 AT AT T e T e

5.3.7.17 Determining the name of a function key

procedure FUNCTION KEY NAME(TERMINAL in FILE TYPE;
in

KEY IDENTIFTER : POSITIVE;
KEY e : aut STRING;
LAST : out POSITIVE);:

3
g This function returns (in KEY NAME) the name of the function key
" sequence designated by KEY IDENTIFIER. It also returns the index of
the last character of the function key name in INDEX.

.. Parameters:
) TERMINAL is an open handle on a terminal file.

KEY _IDENTIFIER is the identification mumber of a function key for
the terminal.
is

KEY NAME the name of the key designated by KEY IDENTIFIER.

LAST is the position in KEY NAME of the last character of
the function key name.

Exceptions:

USE_ERFOR is raised if a value of the attribute TERMINAL TYPE
is not PAGE.

MODE_ERFOR is raised if TERMINAL is of mode IN_FILE.

STATUS_ERROR is raised if TERMINAL is not open.

DEVICE ERROR is raised if an input or ocutput operation cannot be
campleted because of a malfunction of the underlying

systam.

CQONSTRAINT_ERROR is raised if the value of KEY IDENTIFIER is greater
than FUNCTION KEYS(TERMINAL).

Additional Interface:

PUNCTION _KEY_NAME(CURRENT INPUT,
KEY_IDENTIFIER, KEY NAME, LAST):

161

3-189

31 OCT 19684

. 5.3.7.18 Deleting characters

procedure DELETE_CHARACTER (TERMINAL ; in FILE TYPE;
CONT 7 in POSITIVE = 1);

e

H
mmmmmmmmmwmm
at the active position and advancing toward the end position.
Adjacent charactars to the right of the active position are shifted
left. Open space on the right is filled with space characters. The
active position is not changed.

7B

‘ TERMINAL is an cpen handle on a terminal file.
E'.:‘ COUNT is the mmber of characters to be deleted.

Exceptions:
- USE_ERROR is raised if a value of the attribute TERMINAL TYPE
tb is not PAGE or the value of COUNT is greater than the
mmber of positions including and following the
active position.

:',.'_ MODE_ERROR is raised if TERMINAL is of mode IN FILE.
STATUS_ERROR is raised if TERMINAL is not cpen.
i DEVICE ERROR is raised if an input or output operation cannot be
canpleted because of a malfunction of the underlying
system.

teo Additional interface:
procedure DELETE CHARACTER (OOUNT ; in POSITIVE 3=l)

DELETE_CHARACTER(CURRENT_OUTPUT, COUNT);
end DELETE_CHARACTER;

5.3.7.19 Deleting lines

procedure DELETE LINE (TERMINAL : in out FILE TYPE;
T COUNT st in POSITIVE):

..................
o L P . v e m

.........

Parameters:

TERMINAL is an open harndle on a terminal file.

COUNT is the nmber of lines to be deleted.

Exceptions:

USE_ERROR is raised if a value of the attribute TERMINAL TYPE
is not PAGE or the value of COINT is greater than the
muber of rows including and after the active
position.

MODE_ERROR is raised if TERMINAL is of mode IN FILE.

STATUS ERROR is raised if TERMINAL is not cpen.

DEVICE _ERROR is raised if an input or cutput operation cannot be
cnpleted because of a malfunction of the underlying

system.
AMditional Interface:
zmmm_m (OXNT : in POSITIVE := 1)

DELETE LINE(CURRENT OUTPUT, COUNT);
end DELETE LINE;

5.3.7.20 Erasing characters in a line

procedure ERASE CHARACTER (TERMINAL : in out FILE TYPE;
QT t in POSITIVE := 1);

]
This procedure replaces COUNT characters on the active line with
space characters starting at the active position and advancing
toward the end position. The active position is not changed.

Paramsters:

TERMINAL is an cpsn handle on a terminal file.

COUNT is the mmber of characters to be erased
Exceptions:

USE ERROR is raised if a value of the attribute TERMINAL TYPE

- is not PAGE or the value of COUNT is greater than the

mmuber of positions including and after the active
position.

MODE_ERROR is raised if TERMINAL is of mode IN FILE.

163

i
2

1)

Frn

bAr e ae e i e gm il . o

-~
TP

—
¢

W
:'

31 OCT 1964

STATUS_ERROR is raised if TERMINAL is not cpen.

DEVICE_ERFOR is raised if an input or output operation cannot be
conpleted because of a malfunction of the underlying

gystem.
Additional Interace:

procedure ERASE CHARACTER (COUNT ; in POSITIVE :=l)
is

ERASE_CHARACTER(CURRENT_OUTPUT, COUNT);
end ERASE CHARACTER;

5.3.7.21] Erasing characters in the display

procedure ERASE IN DISPLAY (TERMINAL : in out PILE TYPE;
SELECTION : in SELRCT ENUMERATION);

Purpose:

This proceure erases the characters in the entire display as
determined by the active position and the given SEIECTION (including
the active position). After erasure erased positions have space
characters. The active position is not changed.

Parameters:
TERMINAL is an open handle on a terminal file.
SELECTION is the portion of the display to be erased.
Exceptions:
USE_ERFOR is raised if a value of the attribute TERMINAL TYPE
is not PPGE.
MODE_ERROR is raised if TERMINAL is of mode IN FILE.

STATUS ERFOR is raised if TERMINAL is not gpen.

DEVICE_ERFOR is raised if an input or output operation cannot be
cmpleted because of a mlfunction of the underlying
system.

Additional Interface:

gocadm ERASE IN DISPLAY (SELECTION : in SELECT ENUMERATION)

ERASE_IN DISPLAY(CURRENT CUTPUT, SELECTION):
end ERASE_IN DISPLAY;

LA A o

LY

L g

T AT TR R W A N, WL EL S g e ,
‘.-9 AP A 1. T A EA (32 g “ T P . N 1 A ey iy T ST p poy T N T T T T TV T oTws

o 31 OCT 1984

5.3.7.22 Erasing in a line

'y procedure ERASE IN LINE (TERMIMAL : in out FILE TYPE;
' SELECTION : in SELFCT ENUMERATION); 3

¢ Purpose:

‘ This procedure erases the characters in the active line as
determined by the active position and the given SELECTION (including -

‘ the active position). After erasure erased positions have space x;

.- characters. The active position is not changed.

A Parameters: A
: TERMINAL is an cpen handle on a terminal file. =3
SELECTION is the portion of the line to be erased. -

A

I‘.‘

K Exceptions:
: USE_ERROR is Mﬁammamatmm_m

. is not PAGE. -
i MOE_ERFOR is raised if TERMWL is of mode TN FILE. -
. STATUS_ERROR is raised if TERMINAL is not cpen. .

DEVICE ERROR is raised if an input or cutput operation cannot be
canpleted because of a malfunction of the underlying

system.

~ Additional Interface:
: ﬁm ERASE IN LINE (SELECTION : in SELECT ENUMERATION)

.
o~

(1~

.
e
«lo’s]

N ERASE_IN_LINF(CURRENT CUTPUT, SELECTION);
end ERASE IN LINE; &

: o
- 5.3.7.23 Inserting characters in a line
) procedure INSERT SPACE (TERMINAL : in out FILE TYPE: =
q CONT : in POSITIVE 1= 1); '
Purpose: !

This procedure inserts CXNT space characters into the active line T
X at the active position. The character at the active position amd
. adjacent characters are shifted to the right. The rightiost -~
- characters on the line may be lost. The active position is advanced -

to the right COINT character positions.

" Paramsters:
. TERMINAL is an open handle on a terminal file.
Y COUNT is the mmber of SPACE characters to be inserted.
: 165 -
\ 3-193
[)

5;\;\$$¢.‘.: - ". ‘l.: 0 '.. '.l.'. - '?."- .‘- - ..'. - .‘T - --'~. - R g e T e Y. - - b b\ - q" a® o " '.' .. i. .-. -

; & : W . o e AN N

Sttt e A St Tl agr gt Y Ve s ran O4n B Sa Bity Wi Wi v~

N PROPOSED MIL~STD-CAIS
2 31 OCT 1984
h Exceptions:

USE_ERFOR is raised if a value of the attribute TERMINAL TYPE

is not PAGE or the value of QUNT is greater than the

N mmber of colums including and after the active
::\ position.
. MODE_ERROR umumuof.mm_m.

o STATUS_ERROR is raised if TERMINAL is not open.

.. DEVICE_ERFOR is raised if an input or cutput operation cannot be
. campleted because of a malfunction of the underlying

system.
= Additional Interfaces
RO procedure INSERT SPACE (COUNT : in POSITIVE = 1)
is
2 INSERT SPACE(CURRENT CUTPUT, COUNT);
end INSERT SPACE;

= 5.3.7.24 Inserting lines in the display
procedure INSERT LINE (TERMDNAL : in out FILE TYPE;

i' CONT :in POSITIVE 1= 1);
Purposes
. This procedure inserts CQOUNT blank lines into the display at the
‘e active line. The lines at and below the top of the display are
- lost. The active position remains unchanged.
. Parameters:
TERMINAL is an cpen handle on a terminal file.
- QOUNT is the number of blank lines to be inserted.
;: Exceptions:
USE_ERROR is raised if a valus of the attribute TERMINAL TYPE
o is not PAGE or the value of COUNT is greater than the
mmber of rows including and after the active
position.
MODE ERROR isniadifmhofmdcm_m.

g STATUS ERROR is raised if TERMINAL is not open.

. DEVICE _ERROR is raised if an input or output operation canmnot be
- capleted because of a malfunction of the underlying

:_- Additional Interface:

166

3-194

L

L ML,

Wiy LRy

AT LA T e e e e A N R N D T T T T v U~ s o

31 oCT 1984

ﬁoedxem_m (CONT 3 in POSITIVE)

INSERT LINE(CURRENT CUTPUT, COUNT);
end INSERT LINE;

5.3.7.25 Determining graphic rendition support
function GRAPHIC RENDITION SUPPORT (TERMINAL : in FILE TYPE;

RENDITION : in

GRAPHIC RENDITION ARRAY)

Purpose:

return BOOLEAN:

This function returns TRIE if the RENDITION of cambined graphic
renditions is supported by TERMINAL; otherwise it returns FALSE.

DEVICE_ERFOR

is an open handle on a termimal file.

is a combination of graphic renditions.

is raised if a valus of the attribute TERMINAL TYPE
is not PAGE.

is raised if TERMINAL is of mode IN FILE.

is raised if TERMINAL is not open.

is raised if an input or ocutput operation cannot be
campleted because of a mlfunction of the underlying

system.

Additional Interface:

function GRAPHIC_RENDITION SUPPORT
(REDITION in GRAPHIC RENDITION ARRAY)
return BOOLEAN

is
begin

return GRAPHIC RENDITION SUPPORT(CURRENT OUTPUT, RENDITION):
end GRAPHIC_RENDITICN_SUPPORT:

g Rl T wry v L i " t —— ——
m PRt AR R b DA LU b TSt S Sl T R A i~ 1 G i /4 R S-anc e bt e i Sabon el - A Jabun i -ade e i S aa 20 au wo e SIL SR

PROPOSED MIL~STD-CAILS
31 OCT 1964

5.3.7.26 Selecting the graphic rendition

procedure SELECT GRAPHIC RENDITION
(TERMINAL : in FILE TYPE;
RENDITION : in GRAPHIC RENDITION ARRAY
s= DEFAULT GRAPHIC RENDITION):

m:mmﬂngraﬂ\icmﬂidmﬂwwm
wum.

Parameters:

TERMINAL is an open handle cn a terminal file.

RENDITION is the graphic rendition to be used in subsequent
EUTs.

Exceptions:

USE_ERROR is raised if a value of the attribute TERMINAL TYPE
is not PAGE or the selectsd graphic renditions are
not supported by TERMINAL.

MODE _ERROR is raised if TERMINAL is of mode IN FILE.

STATUS_ERROR is raised if TERMINAL is not open.
DEVICE ERFOR is raised if an input or output operation cannot be

Additional Interface:

procedure SELECT GRAPHIC RENDITION
(RENDITION : in GRAPHIC RENDITION ARRAY
1= DEFAULT GRAPHIC RENDITION)
is
begin
SELECT_GRAPHIC_RENDITION(CURRENT_OUTPUT, RENDITION):
end SELECT GRAPHIC RENDITION;

5.3.8 Package CAIS_FORM TERMINAL
This package provides functionality fw'mnipn.atingafomtm

(e.g., an IBM 327x terminal). A form ternminal oonsists of a single
device (inasmuch as a programmer is concerned).

The scenario for usage of a form tepminal has two active agents: a
process and a user. Each interaction with the form terminal consists of
a three step sequence. First, the process creates and writes a form to
the terminal. Secorxi, the user modifies the form. Third, the process
reads the modified form.

PROPOSED MIL~-STD-CAIS
31 OCT 1984

is to be performed is called the
is said to advance toward the end
of its position are incremented.
it attains the highest value

T mm

.....
.....

aﬁwmm
w mmmb

mmw i

<]

FORM_TYPE

s POSITION TYPE;
)

AREA QUALIFIER REQUIRES SPACE : BOCLEAN

(s1zz

type

ey e

169

.

4
el

eT—

X

[

[SLANA

et s b

L

e |

LR r~-

..........

. LA R S
LR L A S s
\ AT A AN -

PROPOSED MIL~STD-CAILS
31 oCT 1984

is private;
subtype FILE TYPEis cms_xo_azum..mz_m;
WWMBMW 'L 'Yy

AREA INTENSITY indicates the intensity at which the characters in the
area should be displayed (NONE indicates that characters are not
displayed). AREA PROTECTION specifies whether the user can mdify the
contents of the area when the form has been activated. A . I'PUT
specifies the valid characters that may be entered by the user;

MODE ERROR :ucq:f.tmmmsm u:im:

MODE ERROR is raised by an attempt to read fram a file of mode OUT_FILE
or te to a file of mode IN FILE. mmilnilodittho
handle on the terminal file Is not open. DEVICE FRROR is raised if an
input or output operation cannot be cawpleted because of a malfunction
of the uderlying system. LAYOUT ERFOR is raised by an attemwpt to set
colum or row mmbers in excess of specified maximum values.

This function returns the maximm valus that can be returned by the
muax-rmmm_m.

Parameters:

TERMINAL is an open handle on a terminal file.

Exceptions:

USE_ERROR is raised if a value of the attridute TERMINAL TYPE
is not FORM.

MODE_ERROR is raised if TERMINAL is of mode QUT FILE ox
APPEND FILE.

STATUS_ERROR is raised if TERMINAL is not cpen.

170

PRI T)

LI PP PGPSR e LIRIEA)

..
.

-« .

PRP R S VSN

.........

a
o .
- PROPOSED MIL-STD-CAIS N
.:j 31 OCT 1984 -
DEVICE ERROR is raised if an input or output operation cannot be =
campleted because of a malfunction of the underlying W
. system.
X Additional Interface: o
\' '-l
M function FUNCTION KEYS return NATURAL
is -
" begin
< return FUNCTTON KEYS(CURRENT INPUT); :
end FUNCTION KEYS;
5.3.8.3 Opening a form
A procedure OPEN
- (FORM : out FORM TYPE;
- SIZE : in POSITION TYPE;
- AREA_QUALIFTER REQUIRES SPACE : in BOOLEAN); -
. X
This procedure cpens a FORM of the specified size to be used with a
" form terminal. e
:: Parameters: N
:l.j FORM is the form to be cpened for manipulation. ‘
SIZE indicates the size of form to be cpened {which should -
- correspond with the size of the form terminal on
- which it will be activated). ..
- AREA_QUALIFIER REQUIRES_SPACE indicates whether the area qualifier 5!
- requires space on this form (i.e., the position in
. which the area qualifier is defined may not be used -
, for the display of data). -
Exceptions: none
::‘ 5.3.8.4 Determining whether a form is open v
function IS_OPEN(FORM : in FORM TYPE) return BOOLEAN: -
. Purpose:
" This function returns TRUE if the FORM has been cpened; otherwise .
- it returns FALSE.
) Parameters: N
. FORM is the form being queried. =
5 Exceptions: none -
Q 5
- 171
» 3-198 |

-o-..l-"

A O N AR

S oy | LA

gorn i - Ora

v -

~
(1
e

PROFOSED MIL~STD-CAIS
31 oCTr 1964

5.3.8.5 Defining a qualified area

Parameters:

FORM is an open form.

INTENSITY indicates the intensity at which the qualified area
is to be displayed.

PROTECTION indicates the protection for the qualified area.

INPUT indicates the permiasible input characters for the
qualified area.

VALUE indicates the initial value of the qualified area.

Exceptions:

STATUS_ERROR is raised if FORM is not open.

5.3.8.6 Removing an area qualifier
procedure REMOVE AREA QUALIFTIER

—

(FORM ~: in out FORM TYPE):

H
This procedure removes an area qualifier fram the active position.

Parameters:

FORM is the open form from which the qualified area is to
be removed.

Exceptions:

USE_ERROR is raised if the active position does not have an
area qualifier.

STATUS_ERROR is raised if FORM is not open.

172

3-199

PR e v - A i R Ak ol g bl ko Bad S8 -Sad Aod -4

\-
b

PROPOSED MIL~STD-CAIS
31 OCT 1964

5.3.8.7 Changing the active position

procedure SET_POSITION(FORM : in out FORM TYPE;
POSITION : in POSITICN TYPE):

Purpose:
This procedure indicates the position on the form that is to become
the active position.

Parameters:
FORM is the form on which to change the active position.
POSITION is the new active position an the form.
Exceptions:

STATUS ERROR is raised if FORM is not open.
LAYOUT ERROR is raised if POSITION does not identify a position on
FORM.

5.3.8.8 Mowving to the next qualified area

procedure NEXT QUALIFIED AREA(FORM : in out FORM TYPE:
QUINT : in POSITIVE := 1);

H
This procedure moves the active position CUNT qualified areas
toward the end of the form.

Parameters:

FORM is an open form.

COUNT is the mmber of qualified areas the active position
is to be advanced.

Exceptions:

STATUS ERROR is raised if either FORM is not open or FORM has
fewar than COUNT qualified areas after the active

position.

173

3-200

R AT DT Y WA 0 P S - 8- T Faavis o WL N g~ g -l -0 Wl e T

PROPOSED MIL~STD-CAIS
31 OCT 1984

5.3.8.9 Writing to a form

procedure PUT (FORM : in out FORM TYPE;
ITEM : in PRINTABLE CHARACTER) ;

Frr,

Purposes
This procedure places ITEM at the active position of FORM and
advances the active position cne position toward the end position.
If the active position is the end position, the active position is

not changed.
Parameters:
g‘: FORM is an open form.
N ITEM is the character to be written to the form. ‘
{‘?‘, Exceptions:
- USE_ERROR is raised if the active position contains an area 1
qulifier and AREA QUALIFTER REXUIRES SPACE of FORM .

was set to TRIE.

STATUS_ERROR is raised if FORM is not open.

T
PR

Additional interfaces:

procedure PUT (FORM : in out FORM TYPE;
ITEM : in STRING)

is
begin
for INDEX in TTEM'FIRST .. ITEM'LAST loop
PUT(FORM, ITEM(INDEX)); = Write a single character

erd loop;
F end PUT;
; 5.3.8.1¢ Erasing a qualified area !

procedure ERASE AREA
(FORM : in cut FORM TYPE);

Purposes
This procedure places space characters in all positions of the area
in which the active position is located.

v—"TP.\
RO

Parameters:
FORM is an open form.

Exceptions:
STATUS ERROR is raised if FORM is not open or no area
qualifiers have been defined for FORM.

v ,o""u‘ \ ‘-,"_:F

| :E,“ RO

174

Ok
oA

3-201

L PRI P LT I e e - -
? - " - LR B EL R A S W N et e e N e e e Sy Tt S . o . -t
LACAI IR oY) ":‘f.."‘.'f A -., e, \-,\J,\}S I A -:,_ A R A L A AU SR ST LN ENEY e ROS

TR T Lo TP R R R o LT i) Y il g BT g oo MBS ALY gt) s St O VG O SV B ¥ N SRL T L

PROPOSED MIL~STD~CALS
31 OCT 1964

5.3.8.11 Erasing the form

ERASE_FORM
(FORM : in cut FORM_TYPE);

Purpose
m'mmmmmmmm
characters in all positions.

Parameters:
FORM is an open form.

S
STATUS_ERROR is raised if FORM is not open.

5.3.8.12 Activating a form on a terminal

procedure ACTIVATE(TERMINAL : in FILE TYPE;
FORM 1 in out FORY TYPE);

Purpose:
This procedure activates the form on the terminal. The terminal

display is modified to reflect the contents of the form. When the
user of the terminal enters a termination key the modified form
returned. Only the unprotected areas of the form may be modified
the user.

Parameters:

TERMINAL is an open handle on a terminal file.

FORM is an open form.

Exceptions:

USE_ERFOR is raised if a value of the attribute TERMINAL TYPE
is not FORM. It is also raised if either the size of
the form is not campatible with the terminal (i.e.
the sizes differ or the area qualifier requires space
cn the terminal, but not on the form.

STATUS_ERFOR raised if either TERMINAL is not open or FORM iS

175

3-202

T

3 F W

[«

<

)
»

e
'b

O

[DA

l_,l.’

e v
.

1 -

J

wre
.

PO I B S0

LINLPY B

.-t
oo

L-

)
o
4
4
<
4
E

........

3

PROPOSED MIL~STD~CAIS
31 OCT 1984

RER

5.3.8.13 Reading from a form

procedure GET (FORM : in out FORM TYPE;
ITTEM : out PRINTABLE CHARACTER):

e 4

t %

Purpose:

This procedure reads a character fram FORM at the active position.
Advances the active position forward one position (unless the active
position is the end position). An area qualifier (on a form on
which the area qualifier requires space) is read as the SPXCE

3

character.
X Parameters:
- FORM is an open form.
ITEM is the character that was read.
Exceptions:

STATUS_ERROR is raised if FORM is not cpen.
Additional interfaces:

[g]
“ 7 Ty
- o . &0

GET (FORM : in out FORM TYPE
procedure L)]

~ ITEM @ out
- is
begin
_' for INDEX in ITEM'FIRST .. ITEM'LAST loop
i GET(FORM, ITEM(INDEX)); — Read a single character
end loop:
end GET;

-,

. &
N

5.3.8.14 Determining changes to a form
function IS FORM UPDATED(FORM : in FORM TYPE) return BOOLEAN;

 §
This function retuxns TRUE if the valus of any position on the form
was modified during the last activate operation in which the form
was used; otherwise it returns FALSE.

s o
. ‘!"".

Parameters:
FORM is an open fomm.

]
STATUS ERROR is raised if FORM is not cpen.

e
el

TR
.I ‘l
. a & o

176

LN ALY

3-~203

Tt b R £

a8 B .8 A8

AL

PP MO

RPN NS

o
i

4

., - w, .

S R NN R ST I S o N

» s N AR e . 3 . oo K " - - 1 . <
NPT T U ATV SR PR R T Wl Sy L Y 3 B r i X Ra e Pl *£¥s . . ¢ 3 vy

PROPOSED MIL~STD-CAIS
31 oCT 1984
5.3.8.15 Detarmining the termination key
function TERMINATION KEY(FORM s in FORM_TYPE) return NATURAL:
Purpose:
This function returns a nurber that indicates which (implemsntation
dependent) key terminated the ACTIVATE FORM procedure. A valus of
zero indicates the normal termination key (e.g., the ENTER key).
Parameters:
FORM is an open form.
ions:
STATUS_ERFOR is raised if FORM is not open.
5.3.8.16 Detemmining the size of a form/terminal
function SIZE(FORM ¢ in FORM TYPE) return POSITION TYPE;
function SIZE(TERMINAL : in FILE KIND) return POSITION TYPE;
Purposes
These functions return the position of the last colum of the last
row of the form/terminal.
Parameters:
FORM is an open form.
TERMINAL is an open handle on a terminal file.
Exceptions:
USE_ERROR is raised if a value of the attribute TERMINAL TYPE
is not FORM.
MOXOE_ERROR ismisdif'mmt.nofmdem_m.

STATUS_ERFOR is raised if FORM/TERMINAL is not open.

DEVICE ERROR is raised if an input ar cutput operation cannct be
campleted bescause of a malfunction of the underlying

systam.
Additional Interface:

function SIZE return POSITION TYPE
is

return SIZE(CURRENT CUTPUT):
end SIZE;

177

o e '-"'."'.“-l\'\"\ e S S
-0, o a e >

-,

LUE o'

3-204

Ax

L §

Zra

LX)

e

rl. 'l .'1
et

o Ly

k.

.

A

O]

.............

AN ‘ e T Fo

e ~mn e TEDOCH SR Eh

[a2 A
0

PROPOSED MIL~STD-CAIS
31 OCT 1964

5.3.8.17 Determining if the area qualifier requires space

function AREA_ QUALIFIER REQUIRES SPACE
(FORM &+ in PORM TYPE)
preturn BOOLEAN;

function AREA QUALIFIFR REQUIRES SPACE
(TERMDNAL ¢ inmz'r!m)
return BOOLEAN:

These functions return TRIJE if the area qualifier requires space on
the form/terminal; otherwise returns FALSE.

FORM
TERMINAL

Exceptions:
USE_ERROR

STATUS ERRCR

DEVICE_ERROR

is an open form.

is an cpen handle on a temminal file.

is raised if a value of the attribute TERMINAL TYPE
is not FORM.

is raised if TERMDNAL is of mode IN FILE.

is raised if FORM/TERMINAL is not open.

is raised if an input or output operation cannot be
ocampleted because of a malfunction of the underlying

system.

Additional Interface:

function AREA_QUALIFIER REQUIRES SPACE return BOCLEAN

is
begin

return AREA QUALIFIER REQUIRES SPACE(CURRENT OUTPUT):
mmmmens

5.3.9 CQAIS GENERAL TAFE

This package provides interfaces for the support of input and outpur
operations on both labeled and unlabeled magnetic tapes. Interfaces for
labeled tapes are designed with careful consideration of level II of

(anst 78].

The CAIS supports the transfer of information to and from a single tape
volume. The CAIS supports the transfer of source programs. Data
transferred to and from tapes may consist of the following characters:

Characters

all printable characters correspording characters

Representation of Characters

178

3-205

|

PROPOSED MIL~STD-CALS f_'i

31 ocr 1964)

horizontal tab ASCII.HT e

vertical tab ASCII.VT ¥4

carriags return ASCII.CR

line feed ASCII.LF =

form feed ASCII.FF »

end-of-file zaro or more NMULLs followed &

immediately by a tape mark.

-

Use of other characters is not defined with the exception of MULL which i

is used in the end-of-file definition. The end-of-line terminator is v
the line fesd. The end-of-page terminator is the form feed. An

end-of-page terminator must be preceded by an end-of-line terminatar. o

An end-of-file must be preceded by an end-of-page terminator. L

To use a tape drive, a handle on the drive

:
E
:
|
:
§
A
!
|

(see Section 5.3.4).
The following is the foomat of files on unlabeled tape where an '*'

Pl

represents a tape mark and BOT is the begimning of the tape. -
-~

BOT file * file * ... * file "
The following is the fonmat of files on labeled tape where an '*' e

represents a tape mark, BOT is the begimning of the VL is the

Volume-fieader Label, HIR is the File-Hesader label, and BEOF is the [on
End-of-File label. o
BOT WL HIR * file * EOF * HDR * file * EOF * ... * HDR * file * EOF ** s
(If a labeled tape is mounted as an unlabeled tape, then each label o
group is considered to be a file.) G;
w,
K.

179
\-l
3206 =
ht
=
1".:;.:'.'<":,\".~ nY .'.'45.:\"! § -..'. ‘.—._:.. ~,‘,‘:‘ N _-‘_._-‘:.'. ::_\3_\' .‘.:‘:‘.'v_ .:-:'.'..-‘\.s.ﬁ.\:.-‘::_’ .."..:.._' ..:‘_:F .'.':':f"'-‘." ..}\:\..}._:_.._:\._-}.‘:.\~ ._:‘:_- - .;’.; (% .‘:-._:

'.’ (] .“: O u'..'.: E"“."”-"

TN

type STATUS is
(START OF TAPE, — at begimning-of-tape reflector mark
END OF TAPE, — at the end-of-tape reflector mark

} TAPE | — delimits the logical end of tape
DRIVE — device is on line
MONTED, = tape has been mounted
LABELFD, — tape is a labeled tape
WRITE ENABLFD); ~— write ring is in place

type STATUS_ARRAY is array(STATUS) of BOOLEAN;
type LOAD TYPE is (UNLOAD, NO_UNLOAD);
type DENSTTY TYPE is (DENSITY 828, DENSITY 1608, DENSITY_6250);

STATUS ARRAY contains current information about a tape drive. LOAD TYPE
determines whether a rewind will stop at the beginning-of-tape reflector
mark or rewird all of the way.

subtype VOLUME STRING is STRING(1..6);
subtype FILE STRING is STRING(1..17);
subtype NAME STRING is STRING;
subtype TAPE TYPE is CAIS.FILE TYPE;

MODE_ERROR ¢t exception renamss CAIS IO EXCEPTIONS.MODE ERROR;
STATUS ERROR : exception renames CAIS IO EXCEPTIONS.STATUS_ERROR:
DEVICE ERFOR : exception renames CAIS IO EXCEPTIONS.DEVICE ERFOR;:
USE_ERROR t exception renamss CAIS IO EXCEPTIONS.USE ERROR;

180

- Ty v “ . -Le -l - Tw e ..A".‘l'.‘ ... e .
"1 , a0l A . -
¥ O NN o e S A

- T e P Y
DRI IR

Nt vt e TN e e e SRR S
S S S A R S AR A R S N

R T Ty T Ty

e

e
LAF D g

LA LML A S AL B LN QRL BV S Re N MY 2B Wa ViAW el Y e P " i W € Ha Ve Vaa N MNP R

5.3.9.2 Mounting an unlabeled tape

procedure UNLABELED MOINT (TAPE DRIVE: in TAPE TYPE;
TAPE NAME: in NAME_STRING) ;

Purpose:
This procadure mounts a tape whose external name is ;)
drive identified by TAPE DRIVE and sets the status of MOUNTED
TRUE.

tape

TRUE. procehure checks for a write ring and
m_mmmly.v mmmmwm.

Parameters:
TAPE_DRIVE is an open handle on a tape drive file.

TAPE NAME is an external label vwhich identifies the volume to

Exceptions:
MODE_ERFOR is raised if the file mode of the TE ORIVE is

STATUS_ERROR is raised if TAPE DRIVE is not cpen.
DEVICE ERROR is raised if an input or output operation cannot be

USE ERROR is raised if an attempt is made to mount a mounted
to

procedure LABFLED MOINT (TAPE DRIVE: in TAPE_TYPE
VOLUME, | in VOLUME_STRING:
TAPE NME: in NAME_STRING) ;

This

MMQ&'MWWWMWM It checks to see
that the first block an the volums is a Volume—Header label (VOL1 -
VOLUME ID in the paramster list must match the
volune identifier in the Volume-Header label on the tape.

The tape is stopped at the begimning-of-tape reflector mark.

Paramsters:
TAPE_DRIVE is an gpen handle on a tape drive file.

]
4
5
!

181

3-208

i
.y

o

|7

r -;.;:r;

« - a A et

F‘_u. T T R T T T T

:
:

VOUME_ID is the name vhich identifies volume:;it must match
! the name in the volume header.
Exceptions:
X MODE_ERFOR is raised if the file mode of the TAPE DRIVE is
EZ IN FILE.
STATUS_ERFOR is raised if TAPE DRIVE is not open.
E DEVICE ERRCR is raised if an input or ocutput
canpleted because of a malfunction of the underlying
[system.
t USE_ERFOR is raised if an attempt is made to
tape, if the VOLUME ID does not match
- identifier, if an attempt is made
t that is not yet initialized, or if an

- procedure DISMOUNT(TAPE DRIVE: in TAPE_TYPE;
LOAD: in LOAD_TYPE := UNLOAD)
3

i This procedure dismounts the tape on the drive

TAPE DRIVE and sets the status of DRIVE READY to FALSE.

parameter LOAD has the value NO_UNIOAD, then the tape is
beginning-of~tape reflector mark and the status of START
i-‘; set THRIE; otherwise, the tape is unloaded.
- dismounted tape has no effect.
F Paramsters:
! TAPE_DRIVE is an open handle on a tape drive file.
, LOAD detazmines whether the tape will be unloaded or left
E.j: at the beginmning-of~tape mark.
P ’
= MODE_ERROR is raised if the file mode of the TAPE DRIVE is
t.' m-m.

STATUS ERROR is raised if TAPE DRIVE is not open.

(.jj DEVICE _ERRCR is raised if an input or cutput operation cannot be
b completed because of a malfunction of the underlying
systam.

182

% 3-209

;.
2 PROPOSED MIL~STD-CALS
& 31 OCT 1984
» 5.3.9.5 Determining tape status

function TAPE STATUS (TAPE DRIVE: in TAPE_TYPE)
\ return STATUS_ARRAY;
3
This procedure obtains aurrent tape status information. ‘This

A procedure may be invoked while the calling process has an open

& handle on the tape drive.
- Parameters:

- TAPE_DRIVE is an open handle on a tape drive file.
g Exceptions:

L MODE_ERROR is raised if the file mode of the TAPE DRIVE is

.:' m_mo

STAIUS ERFOR is raised if TAPE DRIVE is not open.

g DEVICE_ERROR is raised if an input or ocutput operation cannot be

[~ capleted because of a malfunction of the underlying
v system.

.:: 5.3.9.6 Skipping tape marks

. procedure SKIP_TAPE MARKS (TAPE DRIVE: in TAPE TYPE;

N NOMEER: in INTEGER:=1) ;

b
" Purpose:

N This provides a method of skipping over tape marks. A

0
Fl

performed.

[NENENEN '-,I".‘

|

procedure
positive NUMBER indicates forward skipping, while a negative NUMBER
indicates backward skipping. If NUMBER is zero, no cperation is

Mmmnm.mmdm_m_mummaﬁc
this procedure. If two adjacent tape marks are encountered, the
status of DOUBLE TAFE MARK is set TRJE and the tape is stopped

second tape mark. If the end-of-tape (EOT) reflectar
END

) mrk is encomntered,) OF TAPE is set THIE. If the
beginning-of-tape (BOT) reflector mark is encountered, the tape is
" stopped at the BOT reflector mark and the status of START OF TAPE is
:: "t m.
3 ’ /.:J
. TAPE_DRIVE is an open handle on a tape drive file. :__,
. NUMBER is the muvber of tape marks to skip and the direction .
N of movemant. ~
., X
X Excsptions:
MODE_ERFOR is raised if the file mode of the TAPE DRIVE is ~
a
3 183
g 218 =
j -
o
h V“‘-‘f{"{"{“ Y T ﬁ fg;" LA -",. o .) % X 't- P .-'.-' X 'Q'.;-"‘\'.‘\'n' -q'\.f.'-‘_:‘.;.'\‘.‘.;a.;_-.;.--;_a\‘.-\ : ".\.n“‘- -.--.

"‘ I._l"‘a n - ‘.' .' .

Fo

o
C S

! N ol l oot

AT AT ...'..,.‘ T
,44‘141.'.-'1" Wy .41"(.1-[‘:‘1?‘1"{

PROPOSED MIL~STD~CAIS
31 oCr 1984

IN FILE.
STATUS_ERROR is raised if TAPE DRIVE is not open.

DEVICE ERROR is raised if an input or ocutput operation cannot be
canpleted because of a malfunction of the underlying

m.

Notes:

Nothing beyond a double tape mark is accessible.

If the status of END OF TAPE is set TRUE, then it remains TRUE until
the end-of-tape reflector mark is passed in the opposite (reverse)
direction.

5.3.9.7 writing a tape mark

procedure WRITE TAPE MARK (TAPE DRIVE: in TAPE TYPE;
NMBER: in POSITIVE :=1);

H
This procedure writes NUMBER consecutive tape marks on the tape
which is mounted on the drive identified by TAPE DRIVE. The tape is
stopped following the last tape mark written.

A single tape mark is written following each file except the last
file on the tape which is followed by a double mark. For the
CAIS, a file on a magnetic tape is either a text file or a label
group where a label group can be e the
Volume~Header label and a File-Header label,
or an End-of-File label.

If a single tape mark is written the sta TAPE MARK READ is set
to TRUE. If a double tape mark is writt'.m. then the status of
mmmDummm.uuﬂnmmofm_m_mu
set to TRUE. If an end-of-tape (EOT) reflector mark is encountered,
the status of END OF TAPE is set to TRUE.

Parameters:

TAPE_DRIVE is an open handle on a tape drive file.

NUMBER is the number of consecutive tape marks to be written
Exceptions:

MODE_ERFOR is raised if the file mode of the TAPE DRIVE is

IN FILE.
STATUS_ERROR is raised if TAPE DRIVE is not open.

DEVICE_ERROR is raised if an input or output operation cannot be

184

e g *
DA R I I R RN S 7 U T T ST TR Y SRR AL L N
- - . -

............

.....
.....

A AR e T e e s e B B W L T S e R Bt e e i R Lt Wia B B o a W T R i m e e N R r—_— e

»
B
-

.\:
N
A PROPOSED MIL~STD-CAIS X
\j 31 OCT 1984 N
3
canpleted because of a malfunction of the underlying .
.‘ m.
N Notes:
mnl »,
" The status of END OF TAPE remains TRUE until the EOT mark is passed ;
X again in the cpposite (reverse) direction.
5.3.9.8 Initializing a tape pt
procedure INITIALIZE UNLABELED(TAPE DRIVE: in TATE TYPE): ;
Purpose: :
- This procedure initializes an unlabeled tape which is loaded on the
drive identified by TAPE DRIVE and sets the status of LABELED to
Ky FALSE.
..: If the tape is not located at the begimning-of-tape (BOT) reflector R
< mark, then the tape is rewvound to tha BOT reflector mark. Two
o™ adjacent tape marks are written following the BOT reflector mark.
The tape is stopped following the beginning-of-tape reflectar mark.
‘ The status of TAPE MMARK READ is set to TRUE. The status of -
: DOUBLE TAPE MARK is set to TRUE. The status of START OF TAPE is set N
. to FALSE. -
Parameters:
- TAPE DRIVE is an cpen handle on a tape drive file.
::__ Exceptions:
a MODE_ERROR is raised if the file mode of the TAPE DRIVE is
= IN FILE.
STATUS ERROR is raised if TAPE DRIVE is not open.
S DEVICE ERFOR is raised if an input or output operation cannot be v
2 completed because of a malfunction of the underlying
::- m .
t:‘ Notes: -
.f. The first file is written immediately following the
g beginning-of-tape reflector markin fromt of the two tape marks -
written at initialization. t
- To recycle a tape, it muwt be reinitialized; initialization places 3
- the logical end of tape at the begimning of the tape. -
'_‘\.

“
s 3-212

Chiaidiia el Vo tal, mu bl uglh nol tadl be £ ondh And

" : PROPOSED MIL~-STD-CAIS
XA 31 OCT 1984
F 5.3.9.9 Initializing a labeled tape
B procedure INITIALIZE LABELED (TAPE DRIVE: in TAPE TYPE;
. VOLUME ID: in VOLIME_STRING:
{\'. ACCESSTBILITY : in VOLUME ACCESS:=" ");
B3 .
This procedure initializes a labeled tape which is loaded on the
F drive identified by TAPE DRIVE. A file header, two tape marks, an
end-of-file label, and a double tape mark are written. The tape is

stopped at the beginning-of-tape reflector mark.

The expiration date is set to a space followed by five zeroces. The
file name is arbitrary. The section muber is ©00l. The block
count is 020000 .

fﬂ;-v-,
MR

Parameters:
TAPE_DRIVE is an open handle on a tape drive file.
.ﬁ; VOUME_ID is a string identifying the volume name.
ACCESSIBILITY are the access rights to the volume; a space
indicates NO access control.
Exceptions:
MODE_ERROR is raised if the file mode of the TAPE DRIVE is
; IN_FILE.
. STATUS_ERROR is raised if TAPE DRIVE is not open.
{» DEVICE_ERRCR is raised if an input or output operation cannot be
a campleted because of a malfunction of the underlying
system.
. Notes:
L:_.

When the first file is written on the tape, the file header created
by this procedure will be overwritten.

To recycle a tape, it must be reinitialized; initialization places
the logical end of tape at the beginning of the tape.

et g
'-l-‘i

PROPOSED MIL~STD-CAIS
31 OCT 1984
5.3.9.10 Creating a volume header label
procedure VOLUME HEADER (TAPE_DRIVE: in TAPE _TYPE;

ACCESSIBILITY: in VOLUME ACCESS :="";
VOLUME_ID: in VOLUME_STRING):

t
This procedure creates a volume header, as described in Table X, for
the volume maunted on the drive identified by TAPE DRIVE.

TARLE X. Volume Header Label

Character
Position Field Name Content
lto3 ‘l Label Identifier : VoL
4 I| Label Nurber : 1
5told | Volume Identifier | Assigned permanently
| | by owner to identify el
: { volume
11 | Accessibility | Indicates restrictions
| | on access to the
| | information on the
} Il volume =
12 to0 37 | Reserved for Future | B
Standardization : Spaces .
38 to 51
{ % volume
52 t0 79
Seopderdimtion
2
Version

The value of VOLIME ID may not be the empty string. The
accessibility character is obtained from the parameters. The owner
identification is t}lekeyoftl'ie'QIWI‘USERrelaucxth.pofthe
arrent process. The Label-Standard-Version indicates the ANSI .
standard version to which these labels conform. R

187

M}

Py % iy

!

3-214

N
> 31 OCT 1984

! Parameters:
TAPE_DRIVE is an cpen handle on a tape drive file.

VOLUME_ID identifies the volume.

E‘. ACCESSIBILITY is a character representing the access rights to the
volume.
R Exceptions:
MODE_ERROR is raised if the file mode of the TAPE DRIVE is

IN _FILE.

{ STATUS ERROR is raised if TAPE DRIVE is not cpen.

DEVICE_ERFOR is raised if an input or output operation cannot be
campleted because of a malfunction of the underlying
system.

USE_ERROR is raised if tape on drive was mounted as an
unlabeled tape.

5.3.9.11 Creating a file header label

procedure FILE HEADER (TAPE DRIVE: in TAPE TYPE;
mu'mzz in FILET!PE
mm\nat DATE: in STRING :=" 99366");

Purpose:
This procedure creates a file header, as described in Table XI, for
the tape mounted on the drive identified by TAPE DRIVE.

s 4 ‘v_ “y .!4,! '.'.". ra.:-

;

R A R T —— - LN Pate B P, N It o, Wi e poa w

> 4
k.
- PROPOSED MIL~-STD-CAIS ,
N 31 OCT 1984 2
O}
o
: TARLE XI. File Header Label
R\ Position Field Name Content |
i 1to03 = Label Identifier | =R
N 4 = Label Nurber ! 1 T
19 "
N Sto2l | File Identifier Assigned penmanently by
S : | system to identify file 3
’ 2270 27 | File Set Identifier | First VOLME ID in
2 ' | the file set
N 28 to 31 | File Section Nutber | First volume of file is 3
< ‘02d1'. For each volume
- | after, increment by pe
’ I cane base 10. -.
32 to 35 | File Sequence Number Distinguishes files in a
- file set. First file in &
~ | | set gets ‘G201'. For A
- | | each file after, =
- } | increment by one base 14.
. 36 to 39 { Generation Number 2001 <
" 43 to 41 | Generation Version)
| Nuarber E
- | A
) 42to47{ Creation Date Date file header is written
48 to 53 | Expiration Date | Date an which file may be -
2 54 | Accessibility Indicates restrictions on D
- | access to information in b
¥ } file -
55 to 60 : Block Count ™
. 3
,::: 61 to 73 ; System Code Spaces -
5 74 to 83 | Reserved for Future Spaces 5
3 | Standardization "
'.1'
. o
. ™
.-3
-
' 3
189
g %
. W
. 3-216 ™

'
7

f_ /, -f' i

is an open handle on a tape drive file.

. 2 is a string identifying the date the file may be
- overwritten (six characters ' YYDDD' where YY is i

the year and DID is the day (201-366)). When .
. the expiration date is a space followed by five N
- zerces, the file has expired. :)

is the file to be written to tape.

¢

is raised if the file mode of the TAPE DRIVE is 3
IN FILE. ‘
is raised if TAPE DRIVE is not cpen.

DEVICE _ERROR is raised if an input or cutput operation cannot be
capleted bscause of a malfunction of the underlying

e
:

|

h d
.l'l'l

5 -y T W

oy e

5.3.9.12 Creating an end file label

F. procedure END FILE_LAEEL(TAPE_DRIVE: in TAPE_TYPE; :
1-' TEXT FILE: in FILE TYPE; -
EXPIRATION DATE: in STRING := " 99366");:

Purpose:
This procedure creates an end file label, as shown in Table XII, for
the tape mounted on the drive identified by TAPE DRIVE. This label
is written at the end of a camplete file.

I ROR T R)

——y
)
“...

A RS R o I e P N I T I S N T W R R Y
0

T L L S -

© WA

Shhl b,

-

o .
Chaliit .
I TN

11 AR .)_"_.'.

* ‘. .‘ ‘. .‘ .\. l.‘

PROPOSED MIL~STD-CAIS
31 OCT 1984

Character

Position Field Name Contents

lto3 {Iabelldmtifier Rnr

4 =Iab.lmllber :1

5to54 | Sama as corresponding | Same as corresponding
| fields in HDRL | fields in HIR1
| |

55 to 68 | Block Count | Nuwber of blocks in
{ Ilfile

6l to 80 | Same as | same as
| fields in HORL | fields in HIRL

The creation date, the file identifier, and the expiration date

match

the corresponding fields in the file header label.

Parameters:
TAPE DRIVE

EXPIRATICN DATE
the

has
TEXT FILE
MODE_ERROR
STATUS_ERFOR

is an open handle on a tape drive file.

is a string identifying the date the file may be
overwritten (six characters * YYDDD', where YY is

year and DDD is the day (001-366). When expiration
date is a space followed by five zerces, the file

expired.

is the file toO be written to tape.

is ruised if the file mode of the TAPE DRIVE is
IN FILE.

is raised if TAPE DRIVE is not open.

is raised if an input-output operation cannot be
copleted because of a malfunction of the underlying
system.

is raised if tape on drive was mounted as an
unlabeled tape.

191

S N . . RS, 1&gV AR Ol il A PG STV N P PP S i A

3-218

e "] NS q‘ { el ' et '.; u&' n,: PGB ORI th .

;3
P

¥

O T o S0 T G v, P U A A A LG Y

S.4 CAIS Utilities

The BNF for a list's external representation is given in Table XIII.

192

“»

3-219

IR s aroy N5

v e E v e e -

AR RATIG R TR Tl A4 4 VALY o GO L CARR A NSRRI T XX XY < g b ogn -k . > T W% a gt et -

Iy
n
s

+ ~
: PROPOSED MIL~STD-CAIS X
3 31 oCT 1964
o
s TABLE XIII List External Representation BNF &
2 list_type :1= named list | list v
named list s:= ([named item { , nomed item } J)
O positional list :z= ([Teem { , item }7]) =
named_item ::= name string => item e
. item s:= list type
. | quoted string -
- | integer nx I
: | real nr e
| identifier
. integer nr ::= integer literal rm
2 real nr s:= real_lit?ral | } L
" quoted string ::= " { letter or digit | ** } * o
N identifier ;:= ada identifier
- name _string ::= ada identfier a
Notation:
1. Words ~ syntactic categories &
2. [] = optional items -
: 3. {] <~ an item repeated zero or more times
) 4. | =~ separates alternatives 5,
' a,ﬁ;
. iy
5.4.1.1 Types, subtypes, constants, and exceptions - “
type LIST TYPE is limited private: %
type LIST KIND is (UNNAMED, NAMED, MULL); o
d type ITEM KIND is (LIST ITEM, STRING ITEM, INTEGER ITEM,
REAL ITEM, MIFIER_ITD‘I)? -~
subtype LIST TEXT is STRING; 3N
subtype ELEMINT TEXT is STRING; K
: subtype NAME STRING is STRING;
. type OOUNT is range 0 .. implementation defined;
- subtype POSITION COUNT is COUNT range COUNT'FIRST + 1 .. COUNT'LAST: o
: (5
LIST KIND emimerates the umamed and named kinds of lists. ITEM KIND enumerates
), the classifications of list items. LIST TEXT is the type of a list's external .
» representation. ITEM TEXT is the type of a list-item's external representation. e
» NAME STRING is the type of an item's name in a named item. -
£
193 .
3220

". " ." '!.'_ ..'.-. o] F o "- .l m “ -ﬁ’_"a}‘ m ‘_') '.,‘ 1 m

DS SO

ey -' RO ﬁ-

T (REATA { !-.".‘ LR

PROPOSED MIL~STD-CAIS
31 OCT 1984

SEARCH ERROR : exception;

The exception SEARCH ERFOR is raised if a search for a named item fails or if an

item's position falls cutside the range of the list's length.

50‘-1.2 Elﬂhum a mll—].‘llt
function NULL_LIST return LIST TYPE;

Purposes
This finction returns a mull list.

5.4.1.3 Converting from an external list representation

function TO_LIST (LIST LITERAL: in LIST TEXT) return LIST TYPE:
Purpose:

This function converts the extermal representation of a list to

LIST TYPE axi returnse that oconverted valus. This function
the list to be of a named, unnamed or null kind.

Parameters:

LIST LITERAL is the external representation of the list.
Exceptions:

USE_ERFOR is raised if LIST LITERAL does not conform to

the syntax as specified in Table XVII.

5.4.1.4 Converting to external list representation
function TO_TEXT (LIST: in LIST TYPE) return LIST TEXT:
procedure TO_TEXT (LIST: in LIST TYPE;

LIST LITERAL: out LIST TEXT;
s out natural);

Purpose:
This finction/procedure ooverts a list to its external
representation.

194

3-221

il colbcnlini

St T e - A ke R R W e S oy T T T v P e,

3 PROPOSED MIL-STD-CAIS
) 31 OCT 1984
Parameters:

v LIST is the list to be converted.

¢ LIST LITERAL is the extermal representation of LIST.

'y LIST RANGE is the length of the string returned in
- LISI‘_LITERAL.

b Exceptions:

5.4.1.5 Inserting an item into a list

. LIST ELEMENT: in ELEMENT TEXT:
. POSITION: in COUNT:

IS STRING: in BOQGLEAN:=FALSE);

NI
FRar

!n. O
= .

procedure INSERT (LIST : in out LIST TYPE:

§
7
:

a
.
o*e

i

This procedure inserts an item into a list after the list item
= specified by POSITION. A value of zero (=€) in POSITION specifies a
. position at the head of the list. The position order of the items
NG in the list following the inserted item will assune new ordinal
. valuss starting with the value POSITION +1. An insertion of a named
N list item into an empty list will determine that list to be of named
: kind from then cn. Conversely, an insertion of a umamed list item
will determine that list to be of umamed kind.
- Parameters:
! LIST is the list into which the item will be inserted.
X LIST ELEMENT is the list item to be inserted.
. is the name of the new item. It may only be used ;
- with named lists.
: POSITION is the position specification.
A IS STRING allows a list element of STRING ITEM kind to be)
N expressed as a non-quoted string if set TRUE.)
Exceptions:
N SEARCH_ERROR is raised if POSITION specifies a value larger N
N than the (existing) length of the list. 5
USE_ERROR is raised if an attenmpt is made to insert a named
2, list item into an unnamed list or conversely, an o
¢ attempt is made to insert an unnamed list item C}'
E mamlm. \.\“
I
11
i 195 -
. ey
o -
X 3-222

Al

. - -~ w e, el e e, N e e = . = A .-
<" CACREAS o ': f..'-' -“ ‘—,‘\a‘\ . \'\ f\-)

-

TSI
S Y

o e e e
-.4‘.1’..-:’&‘

e T TR e R T

TR S TR T W TR

S

I;’ o~ -n'\) ST

“r

4‘,-..!!)“'4‘1.1'!.

PROPOSED MIL~STD-CAIS
31 oCT 19684

5.4.1.6 Resetting the value of a named item

procedure RESET (LIST: in out LIST TYPE;

POSITION: in POSITION COUNT:
LIST ELEMENT: in ELEMENT TEXT);

procedure RESET (LIST s in out LIST TYPE;

Purposes

NAMED 1 in NAME STRING;
LIST ELEMENT: in ELEMENT)

This procedure replaces an item in the specified list. The new item
must be of the same itan kind as that it replaces.

Parameters:
LIST
POSITION

is the list ocontaining the item to be replaced.
is the position within the list to identify the
item to be replaced.

is the name of the item to be replaced.

LIST ELFMENT is the new itaem.

Exceptions:

USE_ERROR is raised if LIST ELEMENT does not replace a list

item of the same item kind.

SEARCH ERFOR is raised if there is no item with the NAMED

camponent. or if POSITION has a valus larger than
the (existing) length of the list.

5.4.1.7 Extracting an item
procedure EXTRACT (LIST in LIST TYPE;

POSITION: in POSITION_QOUNT;
LIST FIFMENT: out ELEMENT TEXT;

ITEM_RANGE: cut POSITIVE);
procedure EXTRACT (LIST: in LIST TYPE;
NAMED: in NAME STRING;
LIST ELEMENT: out ELEMENT TEXT:
TTEM_RANGE: out POSITIVE):

function EXTRACT (LIST : in LIST TYPE;

POSITION : in POSITION COUNT)
return ELEMENT_TEXT;

function EXTRACT (LIST : in LIST TYPE;
t in

Purposes

NAMED NAME_STRING) return ELEMENT TEXT;

This procedute returns the list item in LIST ELEMENT as specified by

POSITION or NAMED without removing the item From the list.

~

RIS N

TN AL, o e st T A I T T

. Ve
s ¥y ad T a L.,
Alhitalaral ol 2

E N S A PAE Tl P Sl IR L L AL o L L e

o PR . .
P L R N _ SRR MO R IR A

SN

\ R

o Byhy Py 8y 2 Y

Yoo

PN Y

PROPOSED MIL~STD-CAIS

31 OCT 1964
The function counterparts simply return the list item.
Parameters:
LIST is the list containing the item.
POSITION is the position within the list that identifies
the item to axtracted.

be
of the item to be extracted.

NAMED is the name
LIST ELEMENT is the item read.
ITEM_RANGE is the length of the string returmed in
LIST_ELEMENT.
Exceptions:
USE_ERROR is raised if LIST is ampty.
OONSTRAINT ERROR is raised if the length of the string in the

5.4.1.8 Deleting an item from a list

procedure DELETE (LIST : in out LIST TYPE;
POSITION: in POSITICN COUNT):
procedure DELETE (LIST: in out LIST TYPE:
NAMED: in NAME_STRING);
Purpose:

This procedure deletes the list item specified by POSITION or NAMED
from LIST.

Parameters:

LIST is the list froam which the item will be deleted.

POSITICN is the position within the 1list that identifies
the item to be deleted.

NAMED is the name of the list item to be deleted.

Exceptions:

SEARCH ERROR is raised if there is no item with the NAMED
caponent or if POSITION has a value larger than
the (existing) length of LIST.

USE_ERROR is raised if the parameter NAMED is used with an
umamsd list.

197

3-224

L O

ii] 'i"')

(B)

CROREE (e Cone | T e AL

.Ill
v oA

31 OCT 1984

5.4.1.9 Determining the kind of list or the kind of list item
function KIND (LIST : in LIST TYPE) return LIST KIND;

function KIND (LIST: in LIST TYPE;
POSITION: in POSITION COUNT) return ITEM KIND;

function KIND (LIST: in LIST TYPE;
NAMED: in NAME STRING) return ITEM KIND;
Purpose:

This function returns either the kind of list or the kind of item in
the referenced list.

Parameters:
LIST is the list of interest.
POSITION is the position within the list that identifies
the item.
NAMED is the name of the list item.
Exceptions:
SEARCH ERROR is raised if there is no item with the NAMED
or if POSITION has a value larger than
the (existing) length of LIST.
5.4.1.16 Merging two lists
procedure MERGE (FRONT : in LIST TYFE;
BAK ¢ in LIST TYPE;
RESULT : in out LIST TYPE):
Purpose:
This procedure returns in RESULT a list constructed from the lists
FRONT and BACK. The lists FRONT and BACK must be of the same kind.
Parameters:
FRONT is the first list to be merged.
BACK is the second list to be merged.
RESULT is the list produced by the merge.
Exceptions:
USE_ERROR is raised if FRONT and BACK are not of the same
kind.
198
3-225
e e e e e e e T e

T,

- s e A

PO

. ’l .‘l _'l " ¥

]
[|

v « 8w
fat

} q,"..‘. [Vl S “ g

PR

BT AV AL T

PR TAY L IR TS TR A A -Be

PROPOSED MIL~STD-CAIS
31 OCT 1984

5.4.1.11 Determining the length of the list
function LENGTH (LIST : in LIST TYPE) return COUNT;

Purposes
This function returns a comt of the mmber of items in LIST. If
LIST is empty, LFNGTH returns zero.

Parameters:
LIST is the list of interest.

Exceptionss
None.

5.4.1.12 Determining the nams of a named item

procedure ITEM MAME (LIST : in LIST TYPE
POSITION: in POSTTION COUNT';
NAMED: out NAME STRING:
NAME RANGE: out POSITIVE);

function ITEM NAME (LIST : in LIST TYPE;
POSITION : in POSITION COUNT)
return NAME_STRING:
Purpose:

This procedure/function returns the name of the list item in a named
list, specified by POSITICON.

Paramsters:
LIST is the list of interest.
POSITION is the position within the list that identifies
the item.
NAMED is the string representation of the list item name.
NAME RANGE is the length of the string returned in NAMED.

3-226

.
.
- 'w

{'f«'{‘,'l

ree

N

s .', ' [A
., 0,4,] o R

....................

PROPOSED MIL~STD=CALS
31 OCT 1984

5.4.1.13 Determining the length of a string representing a list or a
list item

function TEXT LENGTH (LIST: in LIST TYPE) return NATURAL;

function TEXT_LENGIH (LIST: in LIST TYPE;
FOSITION: in FOSITION COUNT)
return POSITIVE;

Purpose:
This function returns the length of a string representing either a
list or the list item identified by POSITION in a list.

Parameters:
LIST is the list of interest.
PCSITION is the position within the list that identifies the

item.

L
SEARCH ERFOR is raised if FOSITION has a value larger than the
(existing) length of LIST.

3-227

.........
....................................

b7

LR

N PROPOSED MIL~STD-~CAIS e
- 31 OCT 1984 LY

w

P e
-
o

-
. e
- [N

A Predefined Relations .
N Relation Names and Attributes e

4 2 4 A A
v

|

S
l
)

i
:

- ¥
.

201 -

3-228

G
”
o
0
'+
s
-
’

OBJECT CLASSIFICATION
PARAMETER_LIST
QUEUE_TYPE
RESULTS_LIST

SIZE

START_TIME
SUBJECT_CLASSIFICATION
TERVMINAL TYPE

Predefined Attribute values:
CONTROL,

202

31 oCT 1964

3-229

RS LA

. -..u‘.l(l.’c.'l ;

A et

)
LS

) 'n. R) .". .'..-;. £

’

4 PO

FASR AR A A

WANN

T wl T et

.l

AT G

PROPOSED MIL~-STD-CAIS
31 OCT 1984

APPENDIX B
CAIS SPECIFICATION

This appendix ocontaing a set of Ada package spcifications of the CAIS
interfaces which compiles correctly. It brings togethr most of the
interfaces found in Section 5 using the Nested Generic Subpackages
Inplementation approach. Although the interfaces are not necessarily
shown here in the order in which they are discussed in the text, this

appendix provides a reference listing of the CAIS as well as an
illustration of the generics approach.

(To be supplied in January 19685 Military Standard.)

3-230

m—vlmm LI * 6 » o & o o e« & & & % © ¢ O & ¢ & o o L %

{; APPEND FILE « « o o o s o o o oo oo onoennncenaees 156

AREAINPUT « o o o oo v oo voceosenseeosnass 169
_ AREA PROTECTION « « « o o o o o o o o oo oo aaononnees 169
E' MITRIBUTE NMME . o o « v o o o o oo v oo nsao 65, 66 67,68, T3

MITRIBUTE PATTERN « « « « o o o s e o s e s s s o o s e o o o 73, 74
{ ACCESS LOANOAB ¢ « ¢ o o o o o 6 o o 0 6 066 600 0csssese 34
CAIS PROCESS CONTROL « « « o « « s o o s s o s s s s s o o s s o o 36
{.. CAIS STRUCTURAL NODES .« « « « « o o o o o s s o e o o s s s s s« 34
F COUNT « o o e e o o o o oo oseovcionoooeseecesss 193

m m . . . L] * & o . L] . & @ o L L] * & o LN L L] ' L] 63. “

E m—m s ® & 8 e & o & & 4 & O O 5 0 + S &6 O ¢ & s @ 152'1“
{ mmOO.ID.'Q'..000.......0.0.'. 35

p—
T
PR
Alod

3-231 |

Laed W, e W W 2 M 0 W 310G Yok Ra L A R el e g S S Py a S ba™ Phg " Yrity iy * 4 Yoy ol “34 3 Ul Piig thg 4

LV I’v\‘

»
P

h
DEFAULT REIATION « « o « o « o o o s s s s s s s o oo osoeaos 49

Z2]

- DEFAULT RENDITION .« « « « « o o o o o o o o s o e o o o o o saooldd

-
DEVICE ERFOR + « « o « o « o o o 6 o o o s s s o osooasessldd .
. ELBENT TEXT < ¢ o o o e o oo ot oo oescsonnseseas 193)
FILETYPE . « « o o o o o o o o s 6 0 o s s o oaneoseeceaessld

.-' i

FORMTIPE .« o o v o o v oo oo oonnonnoneenss 169 17 &)
FUNCTION KEY DESCRIPTOR « « « « « « « ¢ o o o o s o o o s o o o o o 149

- GRAPHIC RENDITION ARRAY o « « o ¢ o o « o s o o o o o o o o o o o « 149

\ GRAPHIC _RENDITION ENUMERATION < o ¢ o o o s o o o o o o o o o o ¢ o 149 %
o 4
.“. m_m onuooooo-ooooo--no-.ooo.oooo].‘g .

o

3

mw @ & & 8 & 8 © ¢ O & O O 6 O ° O & * O & 0 ©° O O o b o 0 51

m_mmm’ e & o & © & & & & & & ¢ © o © 2 O ° s e o 35 e
m.wmm * & o L] * & 9 o @ L] L] LI L * o o L] . e . @ . L L x "::)
L ‘.7:

m-mI'...O....‘..'..I........Ix
m-m 00.0.Q'....-000.00000.00000149.19

.
“T

:-; Imaﬁm0.0.0.....0...o.llc..o.co ”

v e
.'-; m_m @ & o 9 6 0 6 0 0 e & 0 O s 0 P s % e " s 08 O s s s 0 79 h 4
P ()
m-m @ ® o 6 & & ¢ s e ¢ O s O s 6 s 5 s s " 2 s 6 " s o o 149
N
., ~
7, W
o)
-‘.
&, I "
205)
0
s -
« “.j
3-232
. *a
o | i
=0 A ":b: O e ~_"..x.-»,\.:~..}.F;‘l_":_;; ‘}.‘:.:-::«: D .‘;.d.:.‘-\." .‘}-F‘ ‘-n"'-..;.\~;-:‘-..‘—-..}:"‘..‘.:_.?:.:‘:-..;:' ‘:. ..:;_\‘...-‘._:. ’ - :...-{-}-. -.{:_(-’..-...-..". c.

HI MO b

L3 J0) ¢- OO o SY

a 7

" DR]

e M N o e WL ¥ ST P G R W LR

lm-m' e ® o L L] L] * & & & & ¢ o o L] e o o o e o o

me. - L L * o e & e & o0 e e & o @ LI * o o L

M_m .'.ool.f.....'..'..io

mm - * & & o L L] L . ¢ ¢ o & o ¢ o L] e & e o o

Mm * o L L L] . s e @ o o e o . o e o LN] L] L] *

W_Pm e e @ @ & s & & o ° & & o & & ° O & * & s o o

m m e o . e e & @ e e o *® & o O & o o e o ¢

mm Ld e o o @ L] L] L] L] e o . o e e o o * o L] * °

wnay

mm ® & & 9 & o & ¥ & o & & ¢ 4 6 & o o s & » 0
-

mm e & e ® @ & & & & & O & o o 5 B 0 4 ° & o o
-

e 3
... .192, 193
cee.. 193
65, €6, 67, 68
C e 192
e, 3%
e W
. 7
R
R
cev.. 100
... 48
c e ... 135
.. 6l, 62 63
c .. 6l
e 4
S 7t
R
. ... 149, 156
c ... 193

mm_m » . . o e o & o L] * s o @ e & o & o o L] . o L L * L] L] 149

m—m . - L] L] L] L ¢ o o & o o o LI L e ®

169, 174, 176

3-233

»

e e -

o o e

v,‘,:..,‘ AR 03 g ANy g SUL I Tl N gt Y g Y el B G S POy S R TR IR P RS e G L P WA P L W s e B “ipy " Py S B N i Sepi it Jundh el ghth i Y Wi g e bl e
i

v

4

PRIVILEGE SPECIFICATION « ¢ « o « o e s o o s s s s s o s s o oo 16

. RELATIONSHIP KEY PATTERN . « o o ¢ o o e e o o o e o o o oo oso 6l

" RELATION NAME PATTERN « < « o = o o o o e o o o s s o o o oo oo 61

SECURITY VIOLATION « « o « o o o s s o o s s o s s s oo ooses 36

2 SELECT ENUMERATION & « o o o o o o o o o o s s s s s o s oo oo o 149

- SET_CUTPUT R T 71

- STATUS ERROR + = « « o o o o o a o s o o o s o o o s s oo oo o149

“ STRING, « o « o o « s o s o s o o s oo osocosaonossssl92
SOCONALY « + « ¢ ¢ o o ¢ ¢ o s o o o s s o o s oo voesess 18

3 TAB EMUMERATION « « o o o o o s o o o o o o s o o o o o oo+ 149, 152
USEERROR « « o o o o oo s o s o oo sononnsoneseass 36

3 USEERROR + o o ¢ o v oo o oo neonsonsonensnsessld9

e 3-234

-

.. .\ -

Nt e e e v T TN TR S Te e Jte T e T T T LT T e T T LT 2
R -'~- DS RO ORI RN N f_‘-".c' -" - q ..-'\ L_; e DA LK N (‘

closes the node handle,

[t e

s

IS PRI I M "' \A' y \.\.ﬁ_. _l.'._n ..n- ‘L." .‘!.. -“1.\ \)_x'h

® & & » o & & 3 6 & o & ¢ & e & & s o o o

L N

9 88

2 4o v B 4 o &

W
~N <~

15

37

16

_.
N . o et
YN !‘\l‘x;-_& \.AJ.A' .

(QROD- 8P 2 eI 1rd A XY o AL W Y (ea e AL e T e A I kP B B gl ! nooip b in TR

“ i
» A

..
\

: f
_: %)
': m' L] L] L] L] L] L] L] L] L] L] [] L] . * L] L] L] L] L] * L] * L] - [] L] L] L] L] x :
o create node attributas ¢ o ¢« o ¢ o o ¢ s e 0 e ¢ e 0 & 0 e s e 0 e 37 '.':
~ g
~' CQUETENL. ¢ ¢ ¢ ¢ ¢ o © o ¢ 0 6 ¢ & ¢ ¢ ¢ &« 6 ¢ 6 06 8 6 06 06 ¢ s 0 0 o 22 -

B .J m L] L] L] L] L] * ® [] L] L] L] L] * L 2 L[] L] L] [] L] * L] L] L] L] . . . o * Ll 7 '7
N
": m m L] L] L L] L] L] L] L] * L L] L] L] L] L] * L] L] L] L] L] L] * L] * L] x

- .
:'. m L L] L] L] L L[] . L] L] L] L] . L] * L L] L] L] L] L] [] L] L] L] L L] L] L] 19 t -~

, W L L] . o e * o o e o o o L] o o s @ L] L e o . L . e e 9 L 7
-:. m . o e o o L] e & o @ o o & ¢ o o o s o o e o e & o ¢ o @ 7

3
2T
o tu

B

]
4
[

L] * e e

?

L]

y'-... "n

€

-
4 m000..l.oo..o..-t.oocoo..ooloo.a

- O € r
- Flle . . e v o o s 4 s s e e s e s e s s s s s e s e e s e ess 8 3
function AREA QUALIFIER REQUIRES SPACE « « + s o o ¢ o « o o o o 178 7

mm_m_m....-............. 131

function FUNCTTON KEYS BMABLED . « . ¢ o o o o o s o oo s o oo 131)
fnction FUMCTION KEYS + « ¢ « o o o o o o o o o o o o o s o s 143 t_
' function FUNCTION KEY COUNT & « o « o o o o o s s o s s s o o o+ 148 _
1 %

X

o -—
. {.:
. %

e 3-236
[N

BIP S BN IP IPR S
AP IS NN

PR Sl Ao 00 DA et et ay A - bl eyt e - o

e B o £

f‘m Mc-mmm-m . o ” @ o e o o L] e o * . o 167
m m-m L o » * o L] L] L e e & © & & o Ld L L] * o m3

atetan "

function INTERCEPTED CHARACTERS « « « « o o o s o o s o o o o o o« 130
mlo-m ® & 8 & & O @ ¢ 3 ° O O @ & & ¢ " & & T o # o o

mm Is-m—m . o L) e o L e e o » o s & o . * o o L] L
fmim Is_m . Ld L) L] L] - e o e o ¢ & o o . o L L] L] L] L) * &

ey
L SL A)

mtim Is—m * 9 . * s o . L * & o L L] L] s o L] ¢ o o . L L L] .

mxs_m.OoOo..c......'.o'..‘ll..
mm_m-m0'..0..00......0....'

m m_m-m . o s & & 9o o e & o o L L * o . o e o @

BB 8 ¢2 33§

Mmm-m‘-m ® & & & o ¢ @ 0 O & & & O o o+ o s s o
fmmm e & ¢ & & 0 @ & o & & e & o & 5 o o V o O e v s o 45

L 20 e 0]
PR

m‘m_m.00..00........0..0!.....

P

ﬁmmlm_mm ® 6 & 8 6 o & & & o & o 5 © & s © B o & &
f\mmm0...oo.t.'.....'.'...c...

LR
A a

f‘mm mm L a & & o & * o & ¢ o O° L L] ® o o L L . L
m Im_m * o * » L] e o e o . L * o e @ e o * e L] e o L]

mm_ml..ln“.o..lo..o....l.

e S B 8B 8 &5 8

Mmm e o e o e o & & 9 L] L] L] L] L] L . o e o L] Ld L] * o . L]

Lam ne 2
F 2 T)
L 4

f‘m m-mw . e e o L . o L] L] L] . o *® o o o L) e & ¢ o @ o 1%
mm m . . L] * e e * & & o o & 9 o L] L L L] L] L] . 49

ﬁm Pm_m L L L L] L] L L L] . o L] L e o L L L] L L] L L] e o 47
Mm m—mm » » & o ¢ & 8 © & 5 0 O o 0 L] L e o e o L 47

Mm mmm . L L o @ o o L L] L " & o 9 . o . o . L] - L 1 36

SAN ! i ;a* s ata

Paf i X7

[y

mm_m.o..o..........'.o.-loo

function PRIMARY NAME
function PROMPT

e 7 B R Y

function SIZZ . ¢ o & « &
function STANDARD ERROR
function START TIME
function STATE OF PROCESS
function TAPE STATUS
function TERMINATION KEY
function TEXT LENGTH
function TO_LIST

function TO_TEXT

identification

s s a A X

AP R LI I T Y Ca P TR LT T T AN e)T LT T e
‘-.."..\'.\-.‘I' \.:\.:'q"\.. ey (\- by 'ﬂ"v}--.)' '.‘: YRS N

46
45
130
129

183
177

. 16

16

=

3 R YY)

XXX

)

“afe)

Bt ptia i Al Np i sa il it N jegdl it Bl sl S NS M AL & A S Sl R R pe - I A S

m (4%

m e & o O e @ o & & o o * o L *® o o O s o o e & e o L] * o . 8

iterator oooooocooooooooooo.oo..o-.o-.8

;
.ﬂ * o L] L L] . L] L] L L] L] . L] L] * L] L] ¢ e e L . o . o L] * ® L] . L L] 8
r ﬁ ® % o ® & o @ & o & & 0 & 0 s 5 % S B O O 0 e O s 0 0 o 0o 19
w L L . L] L L L] L L) L] L] L] L] L] L . * L L] L] L * e o L] . @ L] L] L] L L] 8

ht”t ¢'O-c...0...!.....0..0.'00000.9

e
‘l 'l)
UL

u“....'Q......l....".“........ 8'9
locked against read Operations « « ¢ ¢ o ¢ ¢ ¢ ¢ ¢ o 0 ¢ 0 0o o o o 37

. ———
it

e
v e te

m@matmo.ooi.ooooot...oo.co.. 37

w - * ®© & 9 o e & 8 & o e @ & o ¢ O o ¢ & o * & o o * o L) L e o 9

m * o . o o L) * o @ L e & o o o ® o o o e & ® o * o L) * o L L] “

¢

f BOBE & o v o e o o s oo s s e nos o eseesceconaaes 9

i NOde MANAGEMBIIE. &+ o s o o o ¢ o o« o 6 s o ¢ o ¢ ¢ ¢ o o 06 0 ¢ 00 34
NON=eXisting .« ¢« ¢ o ¢ o o o s ¢ o o ¢ s ¢ 0o 06 0608 00900000 18

NON=-eXisting . ¢ ¢ ¢ ¢ ¢ ¢ o s 4 o o ¢ 0o 06 6 60 0800600600 9
P ODJOCL . o s o o o 6 s s e e s s s s s e e e s s e e e s e 9

wj”to--o...o.O..‘.'l.....ll......o.24

m.-ooo....c.l.tl.!c....l.."c.OO9

.
Ja v
LI

open node handle . o o ¢ ¢ o ¢ o o o 2 o ¢ 6 0 0 06 00 5 0000 00 34
opens anode handle, . ¢ s ¢ o ¢ ¢ ¢ s o ¢ s s o o 0 0 s s o s o o 37
PACKAGES o ¢ o ¢ =« ¢ o o o ¢ o o 5 6 6 56 86 6 6 6 06 0 00 0690 s ¢ 0 82
L packages CAIS JO CONTROL ¢ ¢ o ¢ o s s o ¢ o s s o o s s 0 o s o » 82

Y

m"t L . L] L] . L L] L] . L] L e o o o * o * o * & o L] L] L . L] * & 0 9

POACPLI APl

A

permanent

-o.'n" 47 a0 e " -?‘ o, SR R v.:.- T

procedure ABORT PROCESS
procedure ACTIVATE
procedure ADOPT

procedure APPEND RESULTS
procedure ASSOCIATE
procedure AWATT PROCESS COMPLETION
procedure BELL
procedure CHANGE_INTENT

......

* & o o

23

......
........

* o L L] . e & s o * o L] ¢ ® & o & & ° & ¢ ° @ L] L L L]

e o * o . o L] s o o . e L] L I * o o 0 L 1

* o * & & o o e & L] L] L] L] L L) L] L) L] . L] L] . o L]

* ¢ & & o o o o L] ¢ & o o e & o o 9 . * o

............

e ® & o 5 ¢ B o & 4 & & 06 & o * 6 B o+ O & 5 6 O I B o 6 O 0 o

® 6 & & ¢ & & ¢ & & & & @ o o & 9 + e & » " s 0 ° P " 40

.........I...l......‘.l....‘!.'ls

9
2
20

9
Y.]

9

25

9
175
78
%
132
90
140
43

§ [‘_’1

.

w e v TR R 'T""“!

‘ -’.‘- o

A _]

mem_m_m ¢ & ® & & & & O & @ 0 0o ¢ ® O O " o ¢ 128

mwe m_m ¢ e . L * o . ® & o o . * o o * o o L] L L LI 1”

Ay
L]

.

.

.

.

.

.

.

.

L]

.

.

.

*
.

.

L]
(Y

procedure COPY NODE . . + « « .
mm—m ® O ® & & ¢ o © ® 5 ° & 5 9 S 8 © & & & s & 53

\,‘-,‘

mm ¢ & 6 & 4 0 0 & & 6 & & 2 6 & 6 © & & 0 © 2 e 112
mm'm-m..’.‘...'I'......l..... %

T
[

me m-m-mm * * L] L L] L] L] L] L . ° . L] L] L] 65 [} “
E;-" pmm m-m L] L 4 L] L] L L] * * L] L4 L . * L . . * . L] * L] . 79
me m—pm.mm . L] L L L L] L] L] L] L L] L - . L] “ 2 67

DY N ARR, gk, fe PRt l v Padd: B o §odi iy 1P W, Vs - L A v . . g
o La AR N P T DR, = iy . e an ¥ . * A RSN S PG e v PR A il Jute o o

» - A A At At i

"

.
X
-
M
!-.
"-
’

A

4
I~

procedure FILE HEADER .« « « o« o o ¢ s o o o o o 2 ¢ o o o o o o o 188 -
M procedure FUNCTION KEY NAME ¢ « + ¢ ¢ o o s o s ¢ ¢ o s o s o o o 146 .
Procedure GET « o « o ¢ ¢ ¢ o 0 o o o o o s o o o ¢ 0 0 00 ¢ o 123
procedure GET NEXT « ¢ « o o o o o o o o o o o s s o s 0 e+ 0 63,74 c
. procedure GET NEXT. + o « o ¢ o o o o o s s s s s s o s o neeae 74 h
procedure GET NODE ATTRIBUTE « « « o o o o o o s o o s s s o s o o TL
procedure GET PARENT « ¢ « « = o « o s o s o o s e o o s e o o s s 51

: procedure GET PATH ATTRIBUTE < « « + o o o s o o o s o s o s o s s T2)
mm—m *® O @ o 9 o © ¢ ¢ I ¢ & & & 8 * 0 S @+ " > 97 ;..:;

procedure INITIALIZE WIABELED o + « o o o o o s o o o o s o o o 185
: mm_m..............-....’.. 1“ ;::“
- procedure INSERT SPACE « + « « o o o o s o o s o o s s o s o o o 165

procedure INVOKE PROCESS « « « « o ¢ s o s s o o s o s o o a0 eo 91 _
mem-m..‘...‘..........'..... 1” .
u:\

m‘m—m..0.00-0-.0....0...0. lal ':.
mm.l"o..o.o.ot.-.o.c..o.c 58,59

b

mmo.0.0.........00-0...00.0 1”
mm_m @ & o & o ® & O 5 &6 0 & & P 6 & © T s s e & @ 147 “w

i

'
. &

procedure NEXT QUALIFIED AREA ¢ « o o s « o o o s o o o o o o o+ o 173 -
: Procedure NODE & « « o « o o o o o o o o o o « o o o o o o o oo 127
procedure NODE ATTRIBUTE ITERATE « « « o « o o o o s s o o o o o o 73
Procedure OPEN .« o o o o ¢ o o ¢ o ¢ ¢ s o ¢ ¢ s o 06 06 s 06 0 s 41

215 o

3-242

.....
........................
K . PR R N S S e ~ et et "a e temm g~
.......... ~ S ; .- te "
......... wt, et

RS TGRSR

KAPSE (KERNEL ADA PROGRAMNING SUPPORT ENVIRONMENT)

INTERFACE TEAM PUBLIC REPORT VOLUME S(U> NAVAL OCEAN

SYSTENS CENTER SAN DIEGO CA P R OBERNDORF AUG 85

UNCLASSIFIED NOSC/TD-552-YOL-5 F/G 9/2
ND

AD-A160 335

44

NL

«

¢

.y

R)

um_um_

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS - 1963~ A

{

:
:
o

v

-y

FAr

oy

s

LAY

LA

-

NS AL - T v, 7 CARARR LA
e o ‘. R Rl et A

£

o
T

£

ek g

t
[
[

procedure PATH ATTRIBUTE ITERATE . « « « o o o s e o s o o s o o o 75
Procedure PUT . ¢ ¢ ¢ ¢ ¢ ¢ o ¢ o o 5 ¢ 06 06 060000000000 140
procedure REMVE ARFA QUALIFIER « « o o o ¢ ¢ o o s 0 0o 0 0 0 0 o 172
procedure REMAME . . . ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o 06 06062 0909 9s0e¢00 55
prooeiure RESET . o ¢ ¢ o o ¢ ¢ o ¢ ¢ 06 0 0 0 06200600000 19
procadure RESUME PROCESE . ¢ ¢ o ¢ o ¢ o ¢ o 0 0 0o 0000000 101
procedure SELECT GRAPHIC REMDITION « « o o « o s o s o o o o « » 168
procedure SET ACCESS CONTROL « ¢ ¢ ¢ s o s ¢ s s s 06 s s s s o s s 16
procedure SET CURRENT NODE . « o » o s o o o s s o 0 00 s o » 63, 64
procedure SET BCHD « ¢ o ¢ o o s o o o s 0 s 0 000 0eo0oese 141
procedure SET ERROR ¢ « o ¢ ¢ o o ¢ o ¢ ¢ o 0 0 0 0 0000000 125
procedure SET IOG « o o o o o o o o o v o 0 0 0 0 s ¢ 0 o 0o oo 127
procedure SET POSITION « o o o o o o o s o o ¢ 0 ¢ s ¢ s o o o o
procedure SET TAB ¢ « o « o s o o ¢ ¢ o s 06 0 0 5 0 6 0 00 000
procedure SKIP TAPE MARS .+ « « « o o o o o o s o s o s - o o o« 183
procedure SPAWN PROCESS ¢ & ¢ o s ¢ o o o ¢ ¢ ¢ 0 0 0 0 6 0 o o
procedure SUSPEND PROCESS « ¢ o s o« o o o o o o o s 0 s o « o o o 199
procedure SYCHRONIZE « ¢ o o o o o ¢ o o s ¢ ¢ 6 6 ¢ 6 o 00 0 o 127
procedure TAB < ¢ ¢ o o ¢ o o o o o o o s o 6 o s 6 0000000 139

B B R & 3 g

216

3-243

{
Lo ..'f.’:"‘"f‘".‘-‘.""‘ '.c'.l'."’9.'.. i * ; L A R S R T N A
L e T A AT AT T e T T . ’ j:'_-:;':.‘.‘.:-:;‘__: '-"1'-,';332‘!:-'.':\'{.\1

A Y,

procedure WRITE_RESULTS
procedure WRITE TAPE MARK
process .
PEOCess

. gl A s
’J',.)._' .""

rd

.
Pl
o

KOO S B RIS R LR

A EQ f8 &@&8 @2 WS L7 G

RS LEREY O BV B SO B S T St B T B >

—

—_—rry
. KNG

ey

e
t.

— ey
PR
DR
P

et~

<

PR Pl gup. SEAT i e S il AR S gl ol il g a B gk e, e

Postscript : Submission of Comments

For submission of camments on this CAIS Version 1.4, we would appreciate them
being sent by Arpanet to the address

CAIS-COMMENT at EC1B
If you do not have Arpanet access, please send the comments by mail

Jack Foidl
TRW SYSTEMS

3426 Kenyon St.
Suite 202

San Diego, CA 92119

For mail camments, it will assist us if you are able to send them on
single-sided single-density DEC format diskette - but even if you can

j

this, please also send us a paper copy, in case of problems with reading the
diskette.
All comments are sorted and processed mechanically in order to sinplify their
amalysis and to facilitate giving them proper consideration. To aid this
process you are kindly requested to precede each camment with a three line
header

Isection ...

lversion CAIS 1.4

Itopic ...

Irationale ...

The section line includes the section mumber, the paragraph mmber enclosed in
parentheses, your name or affiliation (or both), and the date in ISO standard
form (year-month-day). The paragraph maber is the cne given in the margin of
the paper form of this document (it is not contained in the ECLB files). As
an example, here is the section line of a canment from a previocus version:

Isection 03.02.01(12)D.Taffs 82-84~26

The version line, for comments on the current document, should only ocontain
"lversion CAIS 1.4 ". Its purpose is to distinguish caments that refer to
different versions.

The topic line should contain a one line sumary of the camment. This line is
essential, and you are kindly asked to awvoid topics such as "Typo" o
“Editorial camment” which will not convey any information when printed in a
table of contents. As an example of an informative topic line, consider:

Itopic FILE NODE MANAGEMENT

3-247

~AOFUYE

S

(o Sou R Ny By

Al

N AN A L LA N

Vaon S arii

Note also that nothing prevents the topic line fram including all the
information of a comnent, as in the following topic line:

itopic Insert: *

As a final example here is a complete commant:

isection 93.02.01(12)D.Taffs 82-04-26
iversion QAIS 1.4

..are {implicitly} defined by a subtype declaration"

3 F

! itopic FILE NODE MANAGEMENT o
- f:q
- Change “component® to “"subcomponent® in the last sentence. -
. Othetwise the statemsnt is inconsistent with the defined -
: use of subcomponent in 3.3,vhich says that subcomponents ‘
are excluded when the term coponant is used instead of

subcamponent . ras
B
Ly
> oy
- (=]
1 S
- T e
: -
h. .-"
- 0
; &
~ ~
: 3
o
&

3-248
. LA Y
o A
e L e T S o e e

AW

R
o« v -,

~

Lo I

e S s
.

STANDARDIZATION DOCUMENT IMPROVEMENT PROPOSAL QB poprave!

INSTRUCTIONS: The purpose of this form is te selicit beneficiel comments which will help achieve precure-
ment of suitable products &t ressenable cost and minimum deley, or will etherwise enhance use of the document.
DeoD 8. gov activities, or manufacturers/ veadars whe ere i liers of the product

sre iavited to submit comments to the government. Fold on lines en reverse side, staple in , snd send to
preperiag sctivity. Comments submitted ea this f(orm do net ceastitute er imply sutherization te waive eny
pertion of the refersaced documeni(s) or 10 amend contrectual requiremants. Attach sny pertinent date which
mey be of use in improviag this document. If there are sdditicasl papers, sttach te form end place both in an
eavelope addreseed to prepariag sctivity.

DOCUYMENT IDENTIFIER AND TITLE

NAME OF ORGANIZATION AND ADORESS CONTRACT NUMBER

MATERIAL PROCURED UNODER A

) o1ngct sovenmmgny contracr (T susconrtract

1. AS ANY PART OF THE DOCUNENT CREATED FROBLEMS OR REQUIRED INTERPRETATION IN PROCUREMENT
usey
A. GIVE PARAGRAPH N\ A AND [}

8. RECOMMENDATIONS FOR CONARCTING THNE DEMICIENCISS

2 COMMENTS ON ANY OOCUMENT AZQUIRENENT CONSIDERED TOO MIGIO

TS T Torrr
3. 13 THE DOCUMENT RESTRICTIVE?

0 ves] wo (11 *Yes™, in whot wayt)

R)
.. d .
LT F ISP, YA R AT

4 REMAAKS
SUSMITTED BY (Printed or typod name and sddress - Optional) TELEPHONE NO.
oATE
(L 1]
DD 1 JAN ,,1 426 REPLACES COITION OF | JAN 68 WHICH MAY BE USED

3-249

PO T I Y

]
1
3
f

(]
.
l’ ".l.'

L2808

Defense Electronics Supply Center
» Directorste of Engineering Standardisation, IESC-E
Dayton, Ohlo 45444

a
.8,
.

OPPICIAL DUSINESS
PENALTY FOR PRIVATE VIR $300

- Defense Electronics Supply Center

< Directorate of Engineering Standardization, IESC-E

- Dayton, Ohlo 45444

'_'-'. roLo

3
o "
i
-~ rn_
4

2 B
_-l

..J “.-
-. \-'
-.: .c:'
N 3-250

DoD
Requirements
and
Design Criteria

for the Common APSE Interface Set (CAIS)

October 1084

Prepared by the
KAPSE Interface Team (KIT)
aad the
KIT-Industry-Academis (KITIA)
for the
Ada® Joint Program Office
Washiagtos, D.C.

* Ada Is & Registered Trademark of the Department of Defense,
Ada Joint Program Office

3-251

O X

g
va"e

VYEYYY

LR

e T

DoD CAIS Requirements & Design Criteria 19 October 1984

PREFACE

The KAPSE lnterface Team (KIT), and its companion Industry-Academia team (KITIA), were formed by
s Memoraadum of Agreement (MOA) sigaed by the three services aad the Undersecretary of Defense in
January, 1982. Their purpose is to coutribute to the achievement of Iateroperability of applications
databases and Traasportability of software development tools (*I&T*®). These are important economic
objectives, identified at the outset of the DoD commosn laaguage isitiative in the mid-1970's and now
acknowledged to require aa integrated Ada Programmisg Support Eavironment (APSE), in addition to the
standard language Ada, for fulfillment. The core of the KIT/KITIA strategy to fulfill IET objectives is to
define 3 standard set of Ada Programming Support Eaviroument (APSE) interfaces (*CAIS® for
«Common APSE Interface Set®) to which all Ada-related tools can be writtes, thus assuring the ability to
sbare tools and databases between conforming Ada Programming Support Eaviroaments (APSEs). Note
that large number of these interfaces are at the Kernel APSE (KAPSE) level. This document establishes

tequirements and design objectives (called “criteria®) oa the definition of a CAIS.

This document is related to the DoD *Stomem:n® Requiremeats for Ads Programming Support
Eavironments in identilving and refining the derived requiremeats which are imposed upon 3 CAiS aed
which effect the I& T-related objectives. Additional influences oa this document were the DoD *Steelman®
Requirements for High Order Computer Programming Laaguages aad the eeversl sets of ANS] *OSCRL*®
requiremnents and design objectives for Operating Systemy Commaad and Resposse Laaguages.

-1

PR A St Sl Sk ARt g Aall Nl Sulh Oy b ol Sk o i Bl Ankiiue et e Svem Sva Jaciig S AT de SRSy 2 —

3-252

O L S T T R S P I
RN R R N g R Nt Rt R R

e T w A et e w mam aa s e e .
- -

- TR CL P A AL My A R i s S e e P M ol e N S M S A S v P - piay Py b, % roWie. e 3 Bty

e m

DoD CAIS Requirements & Design Criteria 19 October 1084

Table of Contents

.. PREFACE 1-1
E-: 1. INTRODUCTION 11
s 1.1 Scope. 1-2
1.2 Terminology. 1-2

1.3 Relationship to CAIS Specifications and Implemeatations. 1-2

F 2. GENERAL DESIGN OBJECTIVES 2-1
2.1 Scope of the CAIS. 2.1

. 2.2 Basic Services. 2-1
! . 2.3 Implementability. a.q
2.4 Modularity. 2.1

2.5 Extensibility. a1

$) 2.6 Technology Compatibility. 2.1
\: 2.7 Consistency. 2-2
2.8 Security. : 2.2

- 3. GENERAL SYNTAX AND SEMANTICS 3.1
é 3.1 Syntax 31
3.1A General Syntax. 3-1

3.1B Uniformity. 31

3.1C Name Selection. 3-1

{ 3.1D Pragmatics. 31
3.2 Semantics 31

3.2A General Semantics. 31

i 3.2B Responses. 3.0
3.2C Exceptions. 3.2

3.2D Consistency. 3.0

[3.2E Cobhesiveness. 32
t:. 3.2F Pragmatics. 3.2
: 4. ENTITY MANAGEMENT SUPPORT &1
4.1 Entities, Relationships, and Attributes 41

P 4.1A Data. 42
C. 4.1B Elementary Values. 2
4.1C System Integrity. 42

- 4.2 Typing 42
i 4.2A Types. 42
4.2B Rules about Type Definitions. 4.2
4.2C Type Definition. 42

o 4.2D Ctanging Type Definitions. 42
t‘_. 4.2E Triggering. 42
4.3 Identification 4.2

- 4.3A Exact Identities. 43
’j.- 4.3B Identification. 4-3
L’ 4.3C Identification Methods. 44
4.4 Operations $-4

4.4A Entity Operations. 44

t’_: 4.4B Relaticnship Operations. 4-4
- 4.4C Attribute Operations. 4-4
4.4D Exact ldentify Operations. 4"

&_ 4.4E Upinterpreted Data Operations. i

3-253

Pad S N I R A e RO At N S e S it s et e b iatt St St SRR AR St iR AT S A S A A et e Jhie -

DoD CAIS Requirements & Desiga Criteria 19 October 1084

4.4F Synchronization. 45
. 4.5 Transaction. 45
» 4.5A Transaction Mechanism. &5
i 4.5B Transaction Coatrol. 45
o 4.5C System Failure. 45
- 4.6 History. 45
4.6A History Mechanism. 45
4.6B History Integrity. 48
4.7 Robustness and Restoration. 46
4.7A Robustness and Restoration. 6
§. PROGRAM EXECUTION FACILITIES 6-1
5.1 Activation of Program 51
5.1A Activatinn. 52
’ 5.1B Unambiguous Identification. 5.2
- 5.1C Activation Data. 52
- 5.1D Dependent Activation. 52
- 5.1E Independent Activation. 5.0
ul 5.2 Termination 5-2
. 5.2A Termination. 5.2
$.2B Termisation of Dependent Processes. 5.2
- $.2C Terminatioa Data. 52
- 5.3 Communication 5.3
= $.2A Data Exchange. 53
- 5.4 Synchronization 53
- 5.4A Task Waiting. 53
. 5.4B Parallel Execution. 53
5.4C Synchronization. 53
5.4D Suspension. 53
. 5.4E Resumption. 53
'3 5.5 Monitoring 53
- 3.5\ Identify Reference. 53
5.5B RTS Independence. 53
5.5C Instrumentation. 3.3
- 6. INPUT/OUTPUT 6-1
.- 6.1 General Input /Output 61
L 6.2 Virtyal I/O Drivers 6-1
. 6.2A Data Upit Transmission 6-1
6.28B Data Block Trassmission 6-2
6.3 Datapath Control 62

6.3A Data Uit Traasmission 6-2 -

6.3B Data Block Transmission 64 o

6.4 Data Entity Transfer 6-5

P At . P AT TR W RO NN SR EIR AP I ysigAas P 1 g A 0 b 8 gudk g pucai- g o0

.ol no

DoD CAIS Requirements & Design Criteria 19 October 1984

1. INTRODUCTION

1.1 Scope. This document provides the Department of Defense’s requirements and design criteria for

the definition and specification of 3 Common APSE Interface Set (CAIS) for Ada Programming Support
Eaviroaments (APSEs).

-
» .

1.2 Terminology. The precise and consistent use of terms bas beea attempted throughout the

[
e

document. .

Many potentially ambiguous terms have been used in the document. Most are defined in the Glossary of b

.'h.‘

KIT/KITIA terminology. Some are defined in the sections where they are used with definitions tailored to

the context of this doc :ment.

Additionally, the following verbs and verdb phrases have bees used consistestly throughout the document
to indicate where and to what degree individual constraints apply. Asny seateace not coataining one of the

. "l

following verbs or verb phrases is a definition, explanation or comment.

*shall® indicates & requiresent on the definition
of the CAIS; sometimes °shall® is followed
by *provide’ or “support,® ta shich cases
the following tvo definitions supercede
this one.

OB O

*shall provide® indicates a requirement for the CAIS to
provide isterface(s) with prescribed
capadbilities.

1

*shall support® indicates a requiresent for the CAIS to
provide interface(s) with prescribed
capabilities or for CAIS definers to
desonstrate that the capsdility asy bde
constructed from CAIS interfaces.

Ul
L

should indicates & desired goal dut oae for which
there is no objective test.

S

CROR

1.3 Relationship to CAIS Specifications and Implementations. This document specifies

functional capabilities which are to be provided in the semaatics of a CAIS specification and are therefore

b 2 ol 2
. .l

to be provided by conforming CAIS implementations. In geperal, the specifications of software fulfilling

those capabilities (and decisions about including or not including CAIS interfaces for certain capabilities as

suggested by the *shall support® defipition in the previous section) are delegated to the CAIS defipers. If

[2at
L

l'-
3-255

&": -‘\‘ N l o n' '-" L ."--"-"..\'. e . .1".-'7\-“"-' s "'.- .') : e RN L R R
4\.\-“‘.‘3:"4’.‘) .‘-"'\'1.'.\' A, NN TR AR, ;_,.;’ {J-f.r'.f. L{L.. ‘f- (.1' 2. L!'L‘fLm

PR i i A MR Mae M e e T "Nt 35 i =aes “Sfhar e 3 S-SRt A e 2 i B e ~ i Yt "Rt e

4 DoD CAIS Requirements & Desiga Criteria 19 October 1984
a particular facility specified in the CAIS is independent of other CAIS facilities, then a CAIS implementor
:" may elect to reuse CAIS facilities to provide the particular specified facility, thereby achieving 3 *lavered
' ': implementation® of the CAIS. Therefore, the realization of a specific CAIS implementation is the result of
::_: intentionally divided decisiog-making autbority among 1) this requirements document, 2) CAIS definers,
" asd 3) CAIS implementors.
»
<
e
"~
: o
- od

e A Ve ta sy FOWLN LN

DoD CAIS Requirements & Desiga Criteria 19 October 1984
2. GENERAL DESIGN OBJECTIVES

2.1 Scope of the CAIS. The CAIS sball consist of the interfaces necessa:y and sufficient to support
the use of APSEs throughout the lifecycle, sad to promote I&T amoag APSEs. The CAIS should be
broad epough to support wide sets of tools and classes of projects. The CAIS is not required to provide all

geaeral operating system capabilities.

2.2 Baslic Services. The CAIS should provide simple-to-use mechanisms for achieving common. simple

actions. Features which support less frequently used tool needs should be given secondary coasideration.

2.3 Implementability. The CAIS specification shall be machine independent and implementation
independent. The CAIS shall be implementable oa bare machines and o maciines with any of a variety
of operating systems. The CAIS shall contain only interfaces which provide facilities which have been
demopstrated ip existing operating systems, kermels, or command processors. CAIS features should be
chosen to have a simple and efficient implementation in many object machines, to avoid execution costs
for unneeded generality, and to easure that usused portions of 3 CAIS implementatioa will not add to
execution costs of a non-using tool. The measures of the efficiency criterion are. primarily. minimum

interactive response time for APSE tools and. secoadarily, consumption of toolchargeable tesources.

2.4 Modularity. Interfaces should be designed in a modular fashion such that they may be understood
in isolation and such that there are no hidden interactions between isterfaces. This permits a tool writer
to employ a subset of the CAIS.

2.5 Extensibllity. The design of the CAIS should facilitate development and use of portable
extensions of the CAIS: ie.. CAIS interfaces should be reusable so that they can be combined to create
pew interfaces and facilities which are also portable.

2.8 Technology Compatibility. The CAIS shall adopt existing standards where applicable. For
example, recognized standards for device characteristies are provided by ANS], ISO, [EEE, asd DoD.

2-1

3-257

SRS I T e Lie ot b

PPt AT MR T WP, Y Y w e
ALEMANEE L8 L R R VLS

DuD CAIS Requirements & Design Criteria 19 October 1984

2.7 Consistency. The design of the CAIS sbhould minimize the sumber of underlying concepts. It
should have few special cases and should copsist of features that are individwally simple. These objectives
are not to be pursued to the extreme of providing inconvenieat mecbanisms for the expression of some

commoa, reasonable actions.

2.8 Security. The CAIS shall be implementable as a secure system that fulfills the requirements for a
Class (B2) system in the DoD document titled *Trusted Computer System Evaluation Criteria.® The
CAIS shall be designed to mediate all tool access to underlying system services (i.e.. no *by-passing® the
confurming CAIS implementation is necessary to implement any APSE fuoction). The CAIS should
accommodate implementatioas that coexist with (without compromisiag) and operate within a vanery of

security mechanisms.

-

~

'

LR

1)

2.2

3-258

-l

-—

o

R T I T S T AR et e e e e e N m v e e e
IR I RN R . TP SN R S A SV AT ARSI TN AT N -'.}.'I.-‘{:(.'d‘..(:c'.‘{'

3

1, »
Ve, ‘.l

e T e R

DoD CAIS Requirements & Design Criteria 19 October 1984

3. GENERAL SYNTAX AND SEMANTICS

3.1 Syntax

3.1A General Syntax. The syntax of the CAIS shall be expressed as Ada package specifications.
The syntax of the CAIS shall conform to the character set as defined by the Ada standard (section 2.1 of
ANSI/MIL-STD-18154).

3.1B Uniformity. The CAIS should employ upiform systactic conventions and should not provide
severa) notations for the same concept. CAIS systax issues (including, at least, limits on name lengths,
abbreviation styles, other naming coavestions, relative ordering of input sad output parameters, etc.)
should be resolved in 2 uniform and integrated manner for the whole CAIS.

3.1C Name Selection. The CAIS sbould avoid coining aew words (literals or identifiers) and shouid
avoid using words in an unconvestional sepse. Ada idestifiers (names) defined by the CAIS should be
natural language words or industry accepted terms whenever possible. The CAIS should define Ada
ideatifiers which are visually distinct 3nd sot easily confused (including, at least. that the CAIS should
avoid defining two Ada identifiers that are only a 2-character tramsposition away from being identical).
The CAIS should use the same name everywhere in the interface set, aad not its possible synonyms. when

the same meaning is intended.

3.1D Pragmaties. The CAIS should impose oaly those restrictive rules, copstraints, or asomalies
required to achieve J&T. The CAIS specification shall esumerate all instances of syntactic constraint
setting which are deferred to the implementor. CAIS implementors will be required to provide the
complete specifications of all syatactic restrictions imposed by their CAIS implementations.

3.2 Semantics

3.2A General Semantics. The CAIS shall be completely and unambiguously defined. The
specification of semaatics should be both precise and uaderstandable. The semantic specification of each
CAIS interface shall include precise statemeat of assumption (including execution-time preconditions for
calls)s, effects on global data and packages, and interactions with other interfaces.

31

3-259

|

ARG

v
oA

rlA

DoD CAIlS Requircments & Design Criteria 19 October 1984

3.2B Responses. The CAIS shall provide staadard resposses for all interfaces, including a unique,
aon-sull response (return value or exception) for each type of wmswccessful completion. All responses
returned across CAIS interfaces shall be defined in 38 implementation-independent manger. Everytime a

CAIS interfaces is called under the same circumstasces, it should return the same response.

3.3C Exceptions. All named exceptioas raised sad propagated by the CAIS shall be documented.
The CAIS specification shall require CAIS implemeatations to provide bandlers for all unpamed exceptions

raised ip the implementatioas’ bodies.

3.3D Conslstency. The description of CAIS semaatics should use the same word or phrase

everywhere. and not its potsible synonyms, whes the same meaning is intended.
3.2E Cohaeslveness. Each CAIS interface should provide osly ose fuaction.
3.2F Pragmatics. The CAIS specification shall enumerste all aspects of the meanings of CAIS

interfaces and facilities which must be defined by CAIS implemestors. CAIS implemestors will be

required to provide the complete specifications for these implementation-defised semantics.

3-260

MO

;
%
L

ooy .
17,

C - - v e B WO TR Y R S - SARCA T L R N N B et e e Y T et g e L e T e T T DAL
e L o e e S T N L L i R R

DoD CAIS Requirements & Design Criteria 19 October 1984

4. ENTITY MANAGEMENT SUPPORT

This characterization of Entity Management Support is based on the STONEMAN requirements for a
database, using 2 model based on the entity-relatioaship coacept. Although a CAIS design meeting these
requirements is expected to demoanstrate the characteristics and capabilities reflected here, it is mot

necessary that such a design directly employ this entity-relationship model.

The genoeral capabilities required ia the model specified by the CAIS are the following. The entity-
relationship model, for which definitions and requiremeants follow in 4.1 - 4.7 provides these capabilities,

and any alternative model of CAIS requiremeants must also.

a. There must be a means for retaining data.
b. There must be 3 way for retaining relationships and properties of data.
c. There must be a3 way of operating upod data and creating new data (and deieting data).

d. There must be 2 means to determine whether the properties of an item of data are valid and

whether operations upon it are valid.
e. There must be a2 way to restrict operations oa aa item of data to valid ones.
f. There must be a description of each item of dsta and that descriptios may be operated upon.

g. The relationships and properties of data must be separate from their existence and separate

from the tools that operate upon them.

b. Tbere must be a way to develop new data by inberiting (some of) the properties of existing
data.

4.1 Entitles, Relationships, and Attributes The following definitions pertain specifically to this

section:

ENTITY A representation of a person, place, event or thing.

RELATIONSHIP An ordered connection or association among entities. A relationship among N eotities
(Dot necessarily distinct) is known as an *N-ary® relationship.

ATTRIBUTE Ap association of ap eatity or relationship with an elementary value

41
3-261

. \ . : e % s e T e e

.' ." "'l"t""l'h'l

S

5y Ay My %% °

R

o . e A . " i~ - o - . .
Plar il e i O 2N AP Sl S fN LRI Ko tiii - A Mpdl Dal, B W2 ST Sl £ v, X el Ry R & r 5 - - L% aNa " aVa i S G P S AP SV A AP P PN M

-
c g
A

) w3
X)
0 e

DoD CAIS Requirements & Design Criteria 19 October 1984
' =
N ELEMENTARY VALLUE o
: One of two kinds of represeatations of data: interpreted and uninterpreted.
N E
INTERPRETED DATA i.i'
A data representation whose structure is coatrolled by CAIS lacilities sad may be used
in the CAIS operations. Examples are represeatations of integer, string, real, data and
. esumeration data, aad aggregates of such data. r.
. "
[
‘. UNINTERPRETED DATA

- A data representation whose structure is not comtrolled by CAIS facilities and is not =

. used in the CAIS operations. Examples might be representations of files, such as t:j

= requirements documents, program source code, and program object code. .

..'-: 4.1A Data. The CAIS shall provide facilities for representing data wsing eatities, attributes or binary ;:3
. relationships. The CAIS may provide facilities for more general N-ary relationsbips, but it is not required

- to do so. f:
A ﬁ
’. 4.1B Elementary Values. The CAIS shall provide facilities for representing data as elementary —
: values. ‘;:

b 4.1C System Integrity. The CAIS facilities shall egsure the integrity of the CAlS-managed data. :

N L)

- 4.3 Typing The following definition pertains specifically to this section: 5%
A 0%
N TYPING An organization of entities, relationships aad attributes in which they are partitioned P

< into sets, called entity types, relatioasbip types and attribute types. according to
designated type definitions. -~

N &

N 4.2A Types. The facilities provided by the CAIS shall enforce typing by providing that all operations
. A
> conform to the type definitions. Every entity, relatioaship and attribute shall bave one and only one type. 3
. [
, 4.2B Rules about Type Definitions. The CAIS type definitions shall -3
N o
- o specify the entity types and relationship types to which each attribute type may apply e
‘:: o specify the type or types of entities that each relationship type may commect and the attribute 0
N types allowed for each relationship type ‘-.:"

o specify the set of allowable elementary values for each attribute type
. o specify the relationship types and attribute types for each eatity type .
':. o permit relationship types that represent cither fuactional mappings (ose-to-one or many-to- ..
y one) or relational mappings (one-to-many or masy-to-maay) b
-
’ a
4 ::"'
v ;) -
: +2 3-262
o ~.
T e A e e

PRl Ao = A aha T R TETITE Tav s = Te YW

E

DoD CAIS Requircments & Design Criteria 19 October 1984

¢ permit multiple distinct relationships among the same entities

5 2

e impose a lattice structure on the types which includes inberitaace of attributes, attribute value
ranges (possibly restricted), relationships and allowed operatioas.

4.2C Type Definition. The CAIS shall provide facilities for defining new entity, relationship and

attribute types.

4.2D Changing Type Definltions. The CAIS shall provide facilities for changing type definitions.

p——y
A
e e

These facilities shall be controlled such that data integrity is maintained.

4.2E Triggering. The CAIS sball provide a conditional triggering mecbanism so that prespecified

ans

procedures or opecrations (such as special validation techmiques employing multiple sttribute value
checking) may be invoked whenever values of indicated attributes change. The CAIS shall provide

facilities for defining such triggers and the operations or procedures which are to be invoked.

Caswaond
PO

4.3 ldentification The following definitions pertain specifically to this section:

EXACT IDENTITY
A designation of an entity (or relationship) that is always associated with the entity (or
relationship) that it desigoates. This exact identity will always designate exactly the
same entity (or relationship), and it canaot be changed.

- .

IDENTIFICATION

A means of specifying the entities, relationships and attributes to be operated on by a
designated operation.

“m

4.3A Exact Identities. The CAIS shall provide exact identities for all entities. The CAIS shall

support exact identities for all relationships. The exact identily shall be unique withia an instance of a

e
"t

CAIS implementation. and the CAIS shall support a mechanism for the utilization of exact identities

across all CAIS implementations.

FIaRY

4.3B Identlfication. The CAIS shall provide identification of all entities. attributes and relationships
The CAIS shall provide identification of sll entities by their exact identify. The CAIS shall support

identification of all relationskips by their exact identity.

S I !'..: M

43
3-263

DoD CAIS Requirements & Design Criteria 19 October 1984

4.3C Identification Methods. The CAIS shall provide identification of entities and relationships by
at least the following methods:

o identification of some "start® eatity(s), the specification of some relatioaship type and the
specification of some predicate involving attributes or attribute types associated with that
relationship type or with some entity type. This method shall identify those emtities which are
related to the identified start entity(s) by relationships of the given relationships type and for
which the predicate is true. Subject to the security constraints of section 2.8, all relationships
and entities shall be capable of ideatification via this method, and all attributes and attribute
ty pes (except upinterpreted data) shall be permitted ia the predicates.

o identification of an entity type or refatioaship type and specification of some predicate oa the
value of any attribute of the entity type or relationship type. This method shall identify those
entities or relationships of the given type for which the predicate is true. Subject to the
security counstraints of section 2.8, all attributes (except unioterpreted data) shall be permitted
io the predicates.

4.4 Operations

4.4A Enatity Operations. The CAIS shall provide facilities to:

® create entities

o delete entities
:E: o examine entities (by examining their attributes and relationships)
-\ o modify entities (by modifying their attributes)
N o identify entities (as specified in Section 4.3)
4.4B Relationship Operations. The CAIS shall provide facilities to:
o create relationships
~ @ delete relationships
:.' @ examine relationships (by examining their attributes)
o modify relationships (by modifying their attributes)
o identify relationsbips (as specified in Section 4.3)
4.4C Attribute Operations. The CAIS shall provide facilities to:
-::: o examiae attributes
:; o modify attnibutes

R

-4

-

Lioalh ~ais o o oa ong e anans

DoD CAIS Requirements & Desigo Criteria 19 October 1984

4.4D Exact Identify Operations. The CAIS shall provide facilities to:

o pass exact identities between processes

o compare exact identities

‘A.L‘n)

44E Unpinterpreted Data Operations. The CAIS shall provide that use of the input-output
facilities of the Ada language (as defined im Chapter 14 of ANSI/MIL-STD-1815A) results in
reading/writing an uainterpreted data attribute of an entity. The facilities of Section 6 shall then apply.

4.4F Synchronization. The CAIS shall provide dynamic access synchronization mechanisms to

individual entities, relationships and attributes.

4.8 Transactlon. The lollowing definition pertains specifically to this section:

B

TRANSACTION A grouping of operations. including » designated sequence of operations. which requires
that either all of the designated operations are applied or none are; e.g.. a transaction is
uninterruptible from the user’s point of view.

S

4.5A Transaction Mechanism. The CAIS sball supporc a transaction mechanism. The effect of

running transactions concurrently shall be as if the concurrent transactions were run serially .

m

4.5B Transaction Control. The CAIS shall support facilities to start. end and abort transactions.

voe !

When a transaction is aborted. all effects of the designated sequence of operations shall be as if the

sequence was never started.

4.5C System Fallure. System failure while » trapsaction is in progress shall cause the effects of the

designated sequence of operations to be as if the sequence was never started.

AP
o

4.6 History. The following definition pertains specifically to this section:

R

HISTORY A recording of the manner in which eatities. relationships and attribute values were
produced and of all information which was relevant in the production of those entities.
telationships or attribute values.

e

4.6A History Mechanism. Thbe CAIS shall support a mechanism for collecting and utilizing history

The history mechanism shall provide sufficient information to support comprebensive configuration

e
At

coatrol.

20

; .

3-265

aal T PP TrT—— i e LR A JA w b i A A s S S
AT R e e pite Shie Sy e Bty Attt By ipdh te A Sadb Sl St Rt A gl A A S NN AR - B . B 2

&l
*
"

L
”
>,
= DoD CAIS Requirements & Desiga Criteria 19 October 1984
. 4.0B Hlstory Integrity. The CAIS shall support mecbanisms for ensuring the fidelity of the history.
'
5
‘; 4.7 Robuatness and Restoratlon. The following definitions pertain specifically to this section:
- BACKUP A redundast copy of some subset of the CAIS-managed data. The subsct is capable of
restoration to active use by s CAIS implementation, particulatly in the event of a loss
- of completeness or integrity in the data in use by implementation.
'.';f ARCHIVE A subset of the CAIS-managed data that has heen relegated to backing storage media
< while retaining the integrity, consistency and availability of all information in the entaty
B management system.
':'_ 4.7A Rcbustness and Restoration. The CAIS shall support facilities which ensure the robustness of
::: and ability to restore CAlS-managed data. The facilities shall include at least those required to support
::' the backup and archiving capabilities provided by modern operating systems.
]
- v
-
_- ':-,'
o .
3
?
7
+ RS
b
:- -‘\
- 6 o
. 3-266

DoD CAIS Requirements & Design Criteria

19 October 1984

5. PROGRAM EXECUTION FACILITIES

Access controls and security rights will apply to all CAIS facilities required by this section.

The following definitions pertain specifically to this section:

PROCESS The CAIS facility used to represent the execution of any program.

PROGRAM A set of compilation units, one of which is a subprogram called the °

mainp program.*®

Execution of the program coasists of execution of the main program, which may invoke

subprograms declared in the compilation units of the program.

RESOURCE Any capacity which must be scheduled, assigned, or controlled by the operating svstem
to assure consistent and non-counflicting usage by programs under execution. Examples

of resources include: CPU time. memory space (actuals and virtu
facilities (variables, devices, spoolers, etc.).

ACTIVATE To create a CAIS process. The activation of a program binds that

al). and shared

program to its

execution environment, which are the resources required to support the process’s

execution. and includes the program to be executed. The activation of

a process marks

the earliest point in time which that process can be referenced as an entity within the

CAIS environment.
TERMINATE To stop the execution of a process such that it cannot be resumed.

DEACTIVATE To remove a terminated process so that it may no longer be referenced
environment.

within the CAIS

SUSPEND To stop the execution of a process such that it can resumed. In the coatext of an Ada
precgram being executed. this implies the suspension of all tasks. and the prevention of

the activation of any task until the process is resumed. It specifically
the release of any resources which a process has assigned to it, or which
to support its execution.

RESUME To resume the execution of a suspended process.

does pnot imply
it has acquired.

TASK WAIT The execution of a task within a process is delayed until a CAIS service requested by
this task has been performed. Other tasks in the same process are not delayed.

$.1 Actlivation of Program

3-267

Ol T PA it S =i M A e DR AT e M oot M e badh aaiieiic i it Rk i Sadiaid Jan e Sl St A gl SendE and it

DoD CAIS Requirements & Dcsign Criteria 19 October 1984

5.1A Activation. The CAIS shall provide a facility for a process to create a process for a program

that has been made ready for execution. This event is called activation.

§.1B Unambiguous Identificatlon. The CAIS shall provide facilities for the unambiguous
identification of a process at agy time between its activation and deactivation; one such capability shall be
as an indivisible part of activation. This act of identification establisues a reference to that process. Once
such 2 reference is established. that reference will refer to the same process until the reference is dissolved.
A reference is always dissolved upon termination of the process that established the reference A

terminated process may aot ue deactivated while there are references to that process.

$.1C Activation Data. The CAIS shall provide a facility to make data available to » program upon

its activation.

§.1D Dependent Activation. The CAIS shall provide a facility for the activation of programs that

depcnd upon the activatiog process for their existence.

$.1E Independent Activation. The CAIS shall provide a facility for the activation of programs that

do not depend upcn the activating process for their existence.

8.2 Termination

§.2A Termination. The CAIS shall provide a facility for a process to terminate a process. There

shall be two forms of termination; the voluntary termination of a process (termed completion) and the

abnormal termination of a process. Completion of a process is always self-determined, whereas abnormal
termination may be initiated by other processes. "1
§.2B Termination of Dependent Processes. The CAIS shall support clear. consistent rules defining _
the termination bebavior of processes dependent on 3 terminating process. *ﬂ
$.2C Termination Data. The CAIS shall provide a facility for termination data to be made "-"ﬂ
available. This data shall provide at least an indication of success or failure for processes that complete. o
For processes that terminate abnormally the termination data shall indicate abnormal termination.
~
\]
a»
el
52 e
3-268
e e .-“_.-.‘.‘:.:\;."_:.*.:.:_:.-_:.;;.:_;.:\;:,;::{.-_:::‘:.-.'.\ e T e e e T e e e e e D

e

2 %

N S
PR

4
S

[by g Wy e

DoD CAIS Requirements & Design Criteria 19 October 1984
§.3 Communlecstlon

§.3A Data Exchange. Tle CAIS shall provide a facility for the exchange of data among processes.

S5.4 Synchronization
5.4A Task Walting. The CAIS shall support task waiting.
§.4B Parallel Execution. The CAIS shall provide for the paralle] execution of processes.

5.4C Synchronization. The CAIS shall provide a facility for the synchronization of cooperating

processes.
§.4D Suspension. The CAIS shall provide a facility for suspending a process.

S.4E Resumption. The CAIS shall provide a facility to resume a process that has been suspended.

§.5 Moaitoring

§.5A Identify Reference. The CAIS shall provide a facility for 3 process to determine an
unambiguous identity of a process and to reference that process using that identity.

§.5B RTS Independence. CAIS program execution facilities shall be designed to require no
additional functiopality in the Ada Run-Time System (RTS) from that provided by Ada semantics.
Coasequently . the implementation of the Ads RTS shall be independent of the CAIS.

§.8C Instrumentation. The CAIS shall provide a facility for a process to inspect and modify the

execution emvironmeat of another process. This facility is intended to promote support for portable

debuggers aad other instrumentation tools.

&3 3-269

LR AP

AR X -

v o _a o

,‘> gy

f'.,..,.' G4

'y

. <
N AR]

PR R

[A l' [NEA
a s

. R
R AFRPEP

e
AR

g
. D)
et

” ‘
[EACRT AL AL AR/ A

o

TV VAT B WL nd AV PR MLy e e AT Sal” Fghc_Radt, A, > s Bugs by B P, Jrg gt Dt g i Mar-uliare ber Ty for 30 s Py

.. -~ '.. '..‘. . L 'l "-..i-. - L -~ -
A T N N e I T S

i}
DoD CAIS Requiremesnts & Desiga Criteria 19 October 1984 =2
6. INPUT/OUTPUT g
The requirements specified in Lhis section pertain to input/output betweea/among objects (e.g. processes. “
data entities, communication devices, and storage devices) upless otherwise stated. All facilities specified
in the following requirements are to be available to noa-privileged processes, unless otherwise specified. |
The following definitions pertain specifically to this section: o
DATA UNIT a representation of a value of an Ada discrete type. ::_ !
DATAPATH the mechanism by which data units are transmitted from a producer to a consumer.
DATASTREAM the data uaits flowing from a producer to s comsumer (without regard to the N
implementing mechanism).
~
CONSUMER an entity that is receiving data wnits via a datapath. oo
PRODUCER an eatity that is transmitting data units via s datapath. -
TYPE-AHEAD the ability of a producer to transmit data units before the consumer requests the data o
units
i
ot
6.1 General Input/Output
a. Waiting. The CAIS shall cause only the task requesting a synchronous input/output operation E;’
to await completion. .
e
o
8.2 Virtual I/O Drivers
-
8.2A Data Unit Transmlssion i_":
a. Hardcopy terminals. The CAIS shall provide interfaces for the control of bardcopy terminals.
o
b. Page terminals. The CAIS shall provide interfaces for the control of page terminals. A page -
terminal transmits/receives ome data unit at a time. ot
c. Printers. The CAIS shall provide interfaces for the control of character-imaging printers and
bit-map printers. ::'_t
t:\'
d. Paper tape drives. The CAIS shall provide interfaces for the control of paper tape drives. ..
(X
-
[
19
61 L:
3-278
-,
-
O IV A T -.:,.:}‘:.. ").‘.-.". > ."- “l;.l‘\'-ﬁ\-lx*\‘b\.l-.:'..“\“.t\.i...'i .‘A-“.’.:'_n_-: ..‘\ ;--'..\:. '-'_\;. .

* WIS R S N T Rt B S T) Wk e

g

DoD CAIS Requirements & Desiga Criteria 19 October 1984

+

e. Graphics support. The CAIS shall support the control of interactive graphical input/output

devices.

s

6.2B Data Block Transmlssion
a. Block terminals. The CAIS shall provide interfaces for the control of character-imaging block

terminals. A Llock terminal trapsmits/receives a block of data units at a time.

LA

b. Tape drives. The CAIS shall provide interfaces for the control of magnetic tape drives.

6.3 Datapath Control

. Interface level. The datapath control facilities of the CAIS shall be provided at a level
comparable to that of Ada LRM File 1/0. That is, control of datapaths shall be provided via
subprogram calls rather than via the dats units transmitted to the device.

‘ Py sl
»

b. Timeout. The CAIS shall provide facilities to permit timeout on input and output operations.

WAL

c. Exclusive access. The CAIS shall provide facilities to obtain exclusive access to a

producer/consumer; such exclusive access does mot prevent a privileged process from

tragsmitting to the consumer.

8.3A Data Unit Trancmission

a. Data unit size. The CAIS sball provide input/output facilities for communication with devices

requiring S-bit, 7-bit, and 8-bit data units, minimally.

b. Raw input/output. The CAIS shall provide the ability to traasmit/receive data uaits aad data
ubit sequences without modification (e.g. transformation of umits, addition of units. removal

e
]

of units).

. v'
v e
”

. Single data unit tragsmission. The CAIS shall provide facilities for the input/output of single
data units. The completion of this operation makes the data wnit available to its consumer(s)

without requiting another input/output event, including the receipt of a termination or escape

sequence, the filling of a buffer, or the invocatioa of an operation to force input/output.

o

- Datapath buffer size. The CAIS shall provide facilities for the specification of the sizes of

input/output data path buffers during process execution.

?
L]

3-271
[v'
e e N A T e T T T T T e S e e e e e A RSO AR O
e AACPON NN ACNE TN S AP N SN NI ISR 3 S 2O 30 S SR PR L G, BRI AR

g X A]

(I N A, W

YU o1y oy

3 VY e v -

;

_...
g MR B g

-

SANINSS

DoD CAIS Requirements & Desiga Criteria

. Datapath flushing. The CAIS shall provide facilities for the removal of all buffered data from

aa input/output datapath.

. Output datapath processing. The CAIS shall provide facilities to force the output of all data

is am output datapath.

. loput/output sequescing. The CAIS shall provide facilities to emsure the servicing of

isputfoutput requests in the order of their invocation.

. Padding. The CAIS shall specify the set of data waits and data unit sequences (including the

null set) which can be added to an input/output datastream. The CAIS shall provide facilities
permitting a process to select/query at execution time the subset of data waits aad data wnit
sequences which may be added (including the sull set).

i. Filtering. The CAIS shall specify the set of dats wnits and data wait sequeaces (including the

aull set) which may be filtered from aa input or output datastream. The CAIS shall provide
facilities permitting a process to select/query at execution time the subset of data wnits and
data usit sequences which may be filtered (including the null set).

j. Modification. The CAIS shall specify the set of modifications that cas occur to dats wnmits in

a0 input/output datastream (e.g.. mapping from lower case to upper case). The CAIS shall
provide facilities permitting a process to select/query st execution time the subset of
modifications that may occur (including the sull set).

. Datastream redirection. The CAIS shall provide facilities to associste at execution time the

producer/consumer of each input/outpus datastream with a specific device, data estity. or
process.

. laput Sampling. The CAIS shall provide facilities to sample an input datapath for available

data witbout baving to wait if data are sot available.

. Transmission characteristics. The CAIS shall support coatrol at execution time of host

traasmission characteristics (e.g., rates, parity, sumber of bits, half/full duplex).

. Type-shead. The CAIS shall provide facilities to disable/enable type-ahead. The CAIS shall

provide facilities to indicate whether gype-shnd is supported in the given implementation.
The CAIS shall define the results of invoking the facilities to disable/enable type-abead in
those implementations that do not support type-shead (e.g.. nulleffect or exception raised)

63

19 October 1954

3-272

)

ate

1

)
(AN

X

-Lafi'

faxt

» e
PR

£

(4

/

.

s L

177

-
L

. e
"
sl a

> OO AADCIL SRAD T, 10 IO, s - A L I e B Nl il Sl s s e sl A ar, Scidp L vl i Sl il i B Y b o~ Rty /3= Ti -4 g P L £ -

6% &

o o v -

A a m

DoD CAIS Requirements & Design Criteria 19 October 1984 "
E o. Echoing. The CAIS shall provide facilities to disable/enable echoing of data units to their
source. The CAIS shall provide facilities to indicate whether echo-suppression is supported in K
> the given implementation. The CAIS shall define the results of invoking the facilities to K
o disable/enable echoing in those implementations that do mot support echo-suppression (e.g.. :
oull effect or exception raised). -
r p. Cootrol input datastream. The CAIS shall provide facilities to desiznate an input datastream
t as 3 control input datastream. |
q. Control input trap. The CAIS shall provide the ability to abort a process by means of
{ trapping a specilic data upit or data unit sequence in a control input datastream of that '
! process. g
& r. Trap sequence. The CAIS shall provide facilities to specify /query the data unit or data unit
sequence tbat may be trapped. The CAIS shall provide facilities to disable/enable this facility
E. at execution time.
. s. Data link control. The CAIS shall support facilities for the dynamic control of data links. .
- including, at least, self-test, automatic dialing, bang-up, and brokes-link bandling.
2}' 6.3B Data Block Transmission ,
2 a. Data block size. The CAIS shall provide facilities for the specification of the size of data N
P blocks during program execution.
b. Datapath buffer size. The CAIS shall provide facilities for the specification of the sizes of .
E input /output datapath buffers during process execution. :
¢. Datapath flushing. The CAIS shall provide facilities for the removal of all buffered data from
r an ioput/output datapath. :
L d. Output datapath processing. The CAIS shall provide facilities to force the output of all data y
. in an output datapath.
E\ e. Input/output sequencing. The CAIS shall provide facilities to ensure the servicing of
- input/output requests in the order of their invocation. .
F
f. Datastream redirection. The CAIS shall provide facilities to associate at execution time each
input /output datastream with a specific device, data entity. or process.
i o4 1
3-273 K
t4
t, (
*, ki
;
'I

.......
...................

o e e g R T e L

DoD CAIS Requirements & Desiga Criteria 19 October 1984

6.4 Data Entity Transfer
s. Common extersal form. The CAIS shall specily a representation oa physical media of a set of
related data catities (referred to a8 the Commoun Extersal Form).

b. Tracsfer. The CAIS shall provide facilities using the Common Exteraal Form. to support the
transfer among CAIS implementations of sets of related data estities such that contents,

attributes, and relationships are preserved.

1

e

F

]

65 =
3-274

;:-.' =" e’ \'.*' -".l.' -"..-~ .
IR SR SO AL AT AN N

et e W ®e .
l'. O‘ . .‘ .. . o
« .

T T S,

e

CAIS SPECIFICATION
COORDINATION REPORT

R 5XX

Bernard Abrams

AN

Grumman Aerospace Corp

INTRODUCT ION

=&

&{ This report contains a sumnary and analysis of standards and
specifications that could possibly confliet with CAIS. A list of
applicable standards was obtained from various indexes and by

E asking knowledgeable people. The primary index used was DODISS

’ (Department of Defense index of Standards and Specifications).

Both government and industry standards were examined. Standards

. that were suspected of conflieting or of being redundant with
{ CAIS were read and are reported herein.

This report would not have been possible without the
_ assistance of the Grummnan Aerospace Corp. Engineering Standards
N Department.

e

R
o

' 3-275

T I 1 SN IO W 4 320t . X g
~
-
n

)
50,

PPN

AT

L AL

CAlS Specification Coordination Report

DOCUMENT ID: ANSI/ANS 10.2 1982

TITLE Recommend Programming Practices to Facilitate
" the Portability of Scientific Computer Programs

DOCWMENT DATE 12 Mareh 1982

AGENCY Amerjican Nuclear Society

STATUS Approved

SUMMARY Programming practices are recomnended for

making application programs portable. The emphasis is on
scientific and engineering applications in FORTRAN. Typiecal
recommendations are to avaid extensions to ANSI Fortran.

CONNECTION TV CAIS There is no connection. ANSI 10.2 is
concerned with achieving portability by using & common subset
of a variety of FORTRAN versions. CAIS achieves portability by
standardizing on an operating system interface in an
environment where the programming language is standard.

S 90000050 S0000000ELLENL NSNS LPILLIINNEBNICOENOEOOCEOEOIOIRUVTEOIOEROEOEUVTRERSOETtSOORTOSE

DOCUMENT D: ANSI/ANS 10.5 1979

TITLE Guidelines for Considering User Needs in
~Computer Program Development

DOCUMENT DATE 29 August, 1979

AGENCY American Nuclear Society

STATUS Approved

SUMMARY User concerns are 1listed including proper

application, ease of use, reliability, and time required to
obtain results, Design practices to achieve programs that meet
the users concerns are modularity, automated adjustment to
hardware differences, and minimized input by using default
values.

CONNECTION TO CAIS This standard is a good summary of design
practices lor building user friendly programs, but it is not
directly applicable to CAIS because CAIS does not define a
human user interface.

A R L o T T T T
o :-.-. ~ -,.-._ DA '-.«.\.v.‘-} ot -:\ -.> BRI

3-276

Y . .. A AL L - - Y - - -
R A AN IR DR e 0 S R TR AT

AN

i
A

.

L4

2P

?’l‘:

-
o't

s
.
b

(i

,
o« .

R X

Fti7e

e

r:- T D D T T T T o T T T T TP i T W T T Ewr e o s e iy
.
. X
[‘ CAlIS Specification Coordination Report :
g .
. DOCUMENT 1D: ANSI X3H1
g TITLE OSCRL (Operating System Command & Response
~ Language) Specification 09SD
P DOCUMENT DATE 2 February 1984 Revision 20
AGENCY ANS1
f STATUS Draft
- ’ SUMMARY OSCRL specifies the command language used by a
{- ~ human user to request operating system services. The purpose is

to promote portability of people and programs among gereral
purpose computer systems. OSCRL has commands for managing files
E (COPY, CREATE, DELETE), commands for managing processes
' (SUBMIT), and a procedural language for econtrolling commands
(IF, LOOP, GO TO, EXIT).

{ CONNECTION TO CAIS There is a strong connection between CAIS

’ and OSCRL. CAIS specifies the language used by a ecomputer
program to call for operating system services. These are the

- same services that a human user requests with OSCRL. The two

i languages should be compatible. If both specifications are
adopted, then & user will use OSCRL to enter requests which
will be translated by a conmmand interpreter to CAIS calls.

{:I There have been discussions of having the user enter
commands in Ada. The OSCRL language is not Ada.

F There is a definite need to coordinate OSCRL and CAIS
since they overlap in many areas. One example is file naming
conventions. A detailed comparison of the OSCRL draft with CAIS

should be prepared.

3-277

: £
: CAlS Specification Coordination Report '
Y
: DOCUMENT _1D: ANSI/MIL-STD 1815A S
~ e
TITLE Ada Programming Language
-y
DOCUMENT DATE 22 January 1982 D
AGENCY Ada Joint Programming Office, DoD
STATUS Approved 1;
N SUMMARY Ada Language Reference Manual B
N CONNECTION TO CAIS In addition to the requirement that CAIS
conlform to the Ada langzuage, MIL-STD 1815A is a prototype of
the format for CAIS. For example the precedent of allowing an .
exception to the outline of MIL-STD 962 was set by MIL-STD R
1813A and followed by CAIS. w
9
® 0 0 2 0 0 00 50 E G 9 PO OL Q0N LB N OO SN T O SN P P LEO0 GO eSO e e OO ECES &“
w
DOCUMENT ID: DoD 4120.3-M
" TITLE Defense Standardization and Specification g
- Program, Policies, Procedures and Instructions -
. DOCUMENT DATE July, 1980 =
, -~
- AGENCY DoD
STATUS Mandatory for use by all DoD activities :
: SUMMARY The organizational procedure for making h
- standards is described. It includes organization and 2
0 assignments, plunning, programming, policies and procedures for “
: standardizing documents. -
. CONNECTION TO CAILS The procedure for making CAIS a standard -
. is described here. T
ot
3-2718

..........
L N

¢

0
(2,

P

- . .
T L T TL LN A A R A e e e e e e e e e [T Y .- .
PN T I P A TR A ‘-..,\.‘..'. RO -‘._‘.'.'.v..- Ot e T . R e I N [T P A M \. Y e
a - Tadead et at et W L A W WA SIS IA, -‘\f\.‘\.\.‘; ';\.:‘.- '.-_:‘_-‘_-\ -":a“.g\:a.‘ n_!\:l:': .. ‘.h» * .‘:‘ \‘.\ \

e '-R Fee VLR LATRIY W Wy L s bea - a a sl e
CAlS Specification Coordination Report
DOCUMENT ID: DOD-STD 7935
TITLE Automatic Data System (ADS) Documentation
DOCUMENT DATE 13 September 1977
AGENCY Department of Defense
STATUS Approved
SUMMARY All the documents that must be produced when

eveloping a computer system are describe. Standard outlines
are given,

CONNECTION TO CAIS An implementation of CAIS would be an ADS, but
CATS itself 1s not. It might be considered an FD (Functional
Description) which is one of the documents of the development
life cycle required by DOD-STD 793S.

LEC LR I B L O I DI A I U RN B BB B I N B B B B A B S A R A A 3 I IR I S SR BN S S RN Y

DOCUMENT 1D: FIPS PUB 30

TITLE Software Swmnary for Deseribing Computer
Programs and Autonated Data Systems

DOCUMENT DATE 30 June 1974

AGENCY Institute for Computer Science, NBS

STATUS Approved

SUMMARY This publication provides a standard software

summary form (SF-~185) for describing computer programs and
automated data systems for identification, reference, and
dissemination purposes.

CONNECTION TO CAIS none

A 1

T ATE LY LG TN T T TN TS A N T S AT hom . (Y . 1 A RYLEe Siie Tan ke e Ried e Sle Siam
o BRSNS 3 A A B -)
4 ” < YIRS P hian i B iy 3 -y
R iy Ly S ted TR UNVONTYTRD o~ Wi
< i SY YT Ty

CAIS Specification Coordination Report

% 2 0 9 00 280 0P 00 P0G OCN PP OEC L0 P00 00 e N0ENNEPEBSSNESRRENS N

DOCUMENT ID: FIPS PUB 41
TITLE Computer Security Guidelines for Implementing

the Privacy Act of 1974

DOCUMENT DATE 30 May, 1975

AGENCY National Bureau of Standards g,
STATUS Approved 2
SUMMARY This is general guidelines for computer &
security including physical security, entry controls, data c:ﬁ
encryption, and programming practices. -
CONNECTION TO CAlS Nothing in CAIS prevents the implementation of 3

the security provisions of FIPS PUB 41.

«
e 'a

L e .
et e

vel

[

s

:.‘T".".
L IR)
)

L™ o «®a" - - .‘ ‘e MY "~ “e v » - » - - - - ~
SN R A A A A i T N PR -
; ; : e o o RO et et taN s e, B T P
> .--Au-l.i‘ 3 T 25 1N 'AFi LEN P R W S R RS ‘_.\\:p"i‘_;‘:;'.n) 'l"_.a '4.'.‘; hi ':-":L‘-s:")":» ".\ ".-.‘:: ':;) '::“..n ':: ‘i“.lh:; f._: ‘_n‘. ". i
- .~ - 4 s -

EURAALSACEA A CIA A" gl ied el ad on b o e Nl Sl Ll e SR G oS g i pus e

0
E:: CAIS Specification Coordination Report
.:. DOCUMENT 1D: FIPS PUB 46
{ TITLE Data Encryption Standard
E DOCUMENT DATE 15 January 1977
2 AGENCY Institute for Computer Science, NBS
E‘, STATUS Approved
. SUMMARY An algorithm is described for enciphering and

deciphering a bloeck of data. The algorithm is applied to data
when it leaves a system, and again when it reenters the system.
The implementation method is not described. Whether or not the
encryption is done in the CPU or in separate modules is not

L specified.

CONNECTION TO CAIS Encryption translates a given bit pattern into
a random pattern. Therefore the transmission system after the
point of encryption must pass all bit combinations. Any CAIS
feature that prevents the transmission of specific characters
could interfere with encryption.

[t
R

E DOCUMENT _1D: 1EEE 162-63

' TITLE Standard Definition of Terms for Electronic
P Digital Computers

- DOCUMENT DATE Dec 63

iz.‘_ AGENCY 1EEE

; STATUS Approved

r’ SUMMARY This is a hardware oriented Zlossary.

CONNECTION TO CAIS Possible use in definitions.

3-281

DAY
o

P N R A A N N N R I B T)
t:..'-;.:.',.(.'-:l'g".a".n A AL/ A e e e e e e NN N

» -.
.
el sun

CAIS Specification Coordination Report

@ 6 0 0 86 006 060008666060 000006060060 0060 0660606008060 0660000060686 0660606000 0009 eve

DOCUMENT _1D: IEEE STD 730-81

TITLE Standard for Software Quality Assurance Plans
DOCUMENT DATE 1981

AGENCY IEEE

STATUS Approved

SUMMARY This standard describes what a SQAP (Software

Requirements Assurance Plan) should be. A SQAP applies to a
software development project. The activities and documents
needed for QA are listed. The. minimun activities are SRR
(Software Requirements Review), PDR (Preliminary Design
Review), CDR (Critical Design Review), SVR (Software
Verification Review), Functional Audit, Physical Audit, and In
Process Audit. The minimum documents are SRS (Software
Requirements Specification), SDD (Software Data Design) SVP
(Softw?re Verification Plan) and SVR (Software Verification
Report).

CONNECTION TO CAIlS The CAIS itself is an interface standard, not
executable software, and therefore is not subject to the same
QA requirements as a software product. However, CAIS is a
product and as such should have some QA plan. A CAIS
implementation is software and needs a full QA plan.

LI N R R S A A A A A A A A I IR AR B AR R A A R A B R B A A A A I AT B A B A B I B B A L * e

DOCUMENT _ID: MIL S 5277%A

TITLE Software wuality Assurance Program
Requirements

DOCUMENT DATE 1 August, 1979

AGENCY US Army Computer Systems Command

STATUS Approved by Department of Defense

SUMMARY This standard is applicable to computer

programs and related data and documentation. A Software Quality
Assurance Program is described. Included is the requirement for
practices and procedures to assure compliance. In addition the
tools, techniques, and methodologies

CONNECTION TO CAIS An implementation of CAIS will require a
QA program.

3-282

PrERALAE Y WY J..!'—"'!.'V.J».J"!...AL_A“;.'."!-IHE'L-ﬂ":1:1!‘“!'}11[“"??!‘”! it ol Nadt ad T
AL Yl - ig Vg ris b R R 2% X At i) AT RV IwTw Ty a Ry
A s

E

s

3

g CAlS Specification Coordination Report

K

- DOCUMENT _IV: MIL-STD 12D
TITLE Abbreviations for Use on Drawings, and in
~ Specifications, Standards, and Technical Drawings.

E DOCUMENT DATE 29 May 1981

E.;: AGENCY Department of Defense

: STATUS Approved
SUMMARY This standard contains a 1list of approved

abbreviations for use in specifications and standards. The list
is by the (full spellinz and is cross referenced by
aboreviation. An interesting quote is "when in doubt, spell it

L out”.
CONNECTION TO CAIS Abbreviations in CAlS should not

. contradict MIL-STD 12D. An abbreviation such as "CAIS" that is
{:-.‘ too specific to appear in MIL-STD 12D is acceptable.

The approved abbreviation for Identification is IDENT. The
use of ID in the CAIS text violates MIL-STD 12D. A non-
h standard abbreviation may be used in a computer name. Agreement

between computer names and MIL-STD 12D is optional. The
standard is concerned with abbreviations in text.

f—
¢
P. DOCUMENT 1D: MIL-STD 483
., TITLE Configuration Management Practices For
i;_ Systems, Equipment, Munitions, And Computer Programs
DOCUMENT DATE 1 June 1971
[- AGENCY USAF
STATUS Approved
E_ SUMMARY This is one of several standards for
configuration management.
fi CONNECTION __ TO _ CAISThis will be important during
- implementation.

3-283

T I Sy =g e -Sau- pan- 7 s Tt ot el nd g |

9 .
PR A

r
e

CAlS Specification Coordination Report

=
® 6 9 0 0 0900 08 6608 00000 600 0050 08060 00 806 ¢ 0000 ¢ 0086088080000 00790008000 e
DOCUMENT ID: MIL STD 961, g
TITLE Military Specification, Preparation Of
DOCUMENT DATE 22 September 1981 oo
AGENCY DoD -
STATUS Approved £
W5
SUMMARY The format of a MIL Specificatioa s e
described. The use if "will" and "shall", the standard section
nunbering, style and word usage are specified. ﬂ
CONNECTION TO CAIS CAIS is a standard, not a specification.)
companion docwunent, MIL STD 962 applies to CAIS. w
™
DOCUMENT ID: MIL STD 962 o
TITLE Outline of Forms and Instructions for the L:';
Preparation of Military Standards o
DOCUMENT DATE 22 September, 197S -
AGENCY DoD, Defense Electronics Supply Center -
STATUS Approved o
SUMMARY This standard gives the format of a MIL -
Standard including word usage, paragraph identification, ~
symbols, format for tables, use of footnotes, and figure sizes. 3
A standardized outline is deseribed.
|58
CONNECTION TO CAlS MIL STD 962 is applicable to CAIS. CAIS 5
‘does conform in terms of format and style. However CAIS does =
not follow the standard outline. This exception is necessary
because the standard outline does not fit an interface i
definition like CAIS. o
£
® 6 00000 850 00000 008 00L PN T BT OG0 OO SO TE OB 0EB 0NN EsNeO P Qv‘
e
-
x

3-284

e s v T A e T A e T N TN T a® et YAy, -
LAY N v oM e %" “» ') Nl \"','\,,-..\-“."‘...'-,-‘,-(.q

W TSN TR OS SRT TR TE

LI ' oA

PR ISR iy, O P e o e e e e s

CAIS Specification Coordination Report

DOCUSIENT _1D: MIL-STD 1644

TITLE Trainer System Software Development

DOCUMENT DATE 7 March 1979

AGENCY Navel Trainer Equipment Center

STATUS Approved

SUMMARY This is one of several standards on the

procedure for developing software. The others are MIL STD 1679
and MIL STD SDS. The documents required and the procedures to
be followed are specified.

CONNECTION TO CAlS None since CAIS is not training equipment
DOCUMENT ID: MIL-STD 1679

TITLE Weapon System Software Development

DOCUMENT DATE 1 December 1978

AGENCY NAVVAT 09Y

STATUS Approved

SUMMARY This standard controls the way software is

developed with emphasis on documents and procedures.

CONNECTION TO CAlS Weapon System software is defined broadly
enough to include software development facilities of which CAIS
is a part. An implementation of CAIS should follow one of the
sof tware development standards.

e
- Sy LLJ

H

o ” N
A AT Y a4 e % RS L IAPSTs D - R b ', » A 3 %
3% - . Ay h - R 1 Fla 2 Apirtay gy s, npb " o P i SRR A A A S e & A il S e/ sl Al i it

. 7.7,

<)

vy
3
1
.
—

S
. <
o . s . . .
; CAIS Specification Coordination Report L’
%
-~
! QCQ...C......OICl...lQO.......‘.l..0'0..‘.0'.0....’..‘..... N
i DOCUMENT _1D: MIL-STD SDS o)
:;-’ TITLE Defense System Software Development Eé
" DOCUMENT DATE 20 December 1983 g
5 AGENCY USAF RADC .
! STATUS Draft Not Approved g;'
SUMMARY The methods and documents for software 4
. development are specified. Structured programming constructs s
o are required. This standard is a replacement for MIL-STD 1679 :ﬁ
- and MIL-STD 1644. Y
. Important quotes are "the contractor is encouraged to 3
incorporate comnercially availabie software” and "the E
contractor shall produce code that can be regenerated and
. maintained wusing only government-owned or contractually
- deliverable software." 1o
. ol
- CONNECTION _TO CAIS There is no conflict. This Standard i
N controls the way CAIS is implemented. @
o
- .\‘:{
CONCLUSION "
The only standard found to have potential overlap is OSCRL. -
- There are other standards that specify the way a standards e
" document is forinatted or the quality control of a program. These -
y must be considered in making CAIS a standard, but-have no direct
o conflict. £a
- ot
- Uot
N e
.
5 .S
o z.,:
4 X
19
- @)
: i
- 3206 =
N L3
- Lo
:

T
)~J w

[4

DDl SNt 0 S b S i ek i e e o R Lk iy e Shag i g g S I et v sttt

CAIS Specification

INDEX

ANSI X3H1

ANSI/ANS 10.2 82
ANSI/ANS 10.5 1979
ANSI/MIL~-STD 1815A
DoD 4120.3-M
DOD-STD 7935

FIPS PUB 30

FIPS PUB 41

FIPS PUB 46

IEEE 162-63

1EEE STD 730-81
MIL S 52779A

MIL STD 861A

MIL STD 962
MIL-STD 12D
MIL-STD 1644
MIL-STD 1679
MIL-STD 483
MIL-STD SDS

Coordination Report

OSCRL

Programming Practices for Portability
Guidelines for Considering User Needs
Ada Programming Language

Defense Standardization Procedures
Automatic Data System (ADS) Documentation
Summary for Describing Computer Programs
Computer Security Guidelines for Privacy
Data Encryption Standard

Standard Definition of Terms for Computers
Software Quality Assurance Plans

Software Quality Assurance Program
Military Specification, Preparation Of
Outline of Forms for MIL Standards
Abbreviations

Trainer System Software Development
Weapon System Software Development
Configuration Management Practices
Defense System Software Development

s O WO -IN NWLMU W B
-

Pt et Pt gt et
WONMNMNS

AR "R a0 28 A pac -l g e ey Sk B o vl Bog R 3 RV
"

3-287

vvvvvv

N » . a v
ATAT AT A T A T L T T Y A A a N a W ad a s N et A ¥ al (F (Va T A e e aa™

Fd

-

g
o
!
o’
,
KITIA DRAFT PROPOSAL
o,
-
,',.': The KITIA believes thet positive action should be taken to eddress the perceived risks incurred
e, by the current approsch to schieving & common APSE interface set. In Janusry of 1985, and
RFP esking for & design of CAIS 2.0 is expected to be issued. This project will provide s CAIS -
A design derived from and competible with the current version. ho
:‘ The current version of the CAIS (1.3) hes been criticized ss too ambitious. This is, in aprt, r
n because it prescribes a model of an operating system which is based on an entity- relationship *
detabese (the “node model”). Because current opersting systems do not heve this structure, -
«f concerns have been expressed sbout the risks in its schedule, its cost, and its technical visbility. -
- In addition, the current CAIS hes mede no explicit provision for implementations ‘on’ and 'beside’ ,
" existing dete menagement and opersting systems. To insure uninterrupted progress in the Ade >
. program snd to provide transition peths for currént compilers and environment efforts, the
% KiTle recommends thet AJPO initiste o second, perallel effort. :;-_',
~ We recommend thet o second RPF be issued simultensously with thet for CAIS 2.0. This second
. RFP should contract a project to explore siter native CAIS designs to reduce risk, and enhance the o
#de community's ability to repidiy deploy Ade tools into existing software development *
environments. This RFP should request an altermtive CAIS design snd working prototype which
sddresses the following objectives: -
. ‘o
. 1. The interfeces sheil be capable of being implemented in at lesst two existing -
- environments without modification to their host operating systems {kernel). £t
2. There shall be minimel dete manegement coding needed in th implementation of the
interfoces to supplement the underlying facilities. This shell maximize use of -
- existing structures snd resources.)
:: 3. Ads tools using the interfeces shell be capable of operating on existing objects snd =
o devices, and cooperate with existing tools. -
= 4. Pre-existing tools shell be capsble of operating on data objects created by the Ade
' tools using the new interfoces. Eq
. S. Ade tools wivich use the interfaces shall be capable of being invoked and controlled ’
. by pre-existing tools end commend 1angueges. o
. 6. The interfoces shell be specified by o set of Ads packege specifications. T
: ter
. 7o
” .,
KR

3-288

-
&d
ol

[
ot

Vo e Wt AT e e TR TR RS (i S S b M e i At e e - e Sy e Bt et

ADA PAPER
by
Dr. Chris Napius

The following paper is presented for your information and consideration
by Dr. Chris Napjus. Dr. Napjus is a respected member of the Software
Engineering Community and is currently employed by the DoD. Dr. Napjus
has followved Ada from its inception and 1s cone of its strongest propon-
nents.

PREAMBLE /PARABLE

Charles Coren revolutionized the world of bridge forty years ago
with his new point-count system of bidding. Today, all American bridge
players know and understand CGoren, or "Standard American” as it 1is now
called. Yet very, very few use the system in unmodified form, and the
variations used, encompassing varlous combinations of features, are
enormous. Yet most pecple use "straight Coren” features for a large plu-
rality of their bids, as the varlations apply to specific, often fairly
rare, situations. Moreover, all can "fall back on Standard American®
wvhenever they are playing with a new partner, gradually deviating from
it over a pericd of time as they agree to variations which are to thelr
mutual 1liking.

The fact that "Coren” still forms the basis for most of the bid-
ding systems used today, despite forty years of evolution and the at-
tempted introduction of a great many different "complete® systems, is a
testament not only to the quality of the system, but also a reminder
that a total revision of the way things are done constitutes an encrmous
undertaking. There are prcbably few - perhaps no - bridge players who
believe that Standard American (or their particular variant of it) 1is
the best possible system. What they agree to is that it is a good one;
that it is understood by anycne with whom they might wish to play: that
it 1is adaptable to whatever particular style they may llke: that
developing an entire, consistent system of their own is essentially im~-
possible: and that even learning a new system, developed by someone
else, would cost more in time and effort than any benefit which might
ultimately accrue.

The analogy between bidding systems and the Ada environment
should be obvious, and should be heeded. It is always possible to
develop a better system than one you have, but the effort involved may
wall not be worth it. There is no single "best"” answer, and one will
never be able to design a system that any sizeable percentage of comput-
er sclentists would agree was the best attalnable at that time. What is
important is to have a good, useful system; better than what one has
currently: which can be learned fairly readily so that it will be under-
stood and capable of being used by any Ada developer. Like bridge
players, software developers will find it far more useful to have a sys-
tem which is solid and consistent, but easily modifiable in particulars
to suit a given environment.

SOME RELEVANT CONSIDERATIONS

1. Ada was conceptualized, designed, funded, and develcped to solve a
pressing DoD need. The fact that it is more widely useful than ini-
tially envisioned is not a reason for deviating from its intended
focus. The degree to which it will benefit non-DoD users is largely
synergistic. Its benefit to DoD is essential.

2. As a percentage of the entire fleld of users, few (particularly
within DoD) have any meaningful tools at all, let alone integrated
environments. What is essential, as a first step, is to change this

Py

Rer oty e Wed LA Sat Sl €1 S A0 WO Rl - v D e e e e TR R T N e R . RO AR Bt i i,

-, situation, even 1if the result is not “state-of-the-art" for any par-
1§ ticular state-of-the—art. There is vastly more to be gained by moving

the bulk of the users SOON from 15 years behind the S-O-T-A to only S
o years behind than there is by providing the relatively few who are
M working at the S-0-T-A with a much more advanced environment SOMETIME
,, in the future. In short, we should not be applying our effort to de-
" fining an environment for the 90's vhen the bulk of the users are
still working in the 70°'s.

3. There is also a significant danger to the entire Ada effort by wait-

. ing too long to provide something practical. Aside from the obvious
- material loss in having to maintain too many non-standard systems
- that much longer, Ada willl not be used extensively until it is able
- to promise a SUBSTANTIAL benefit over other systems. This requires a

::f usable environment. The longer we wait, the longer it will be until a
large number of people are trained on Ada and, as the widely pro-
claimed benefits recede ever-farther into the twilight, the emphasis

-~ on training pcople will become less and less. The community is ready

N for Ada NOW. The number of non-bellevers will grow exponentially the

"N longer it continues to be “"something for the future."

4. Even a relatively small set of manually-invoked tools would be a sig-

nificant Iimprovement over the common situation today. Moreover, in-
crementality does not preclude improvement. We can have it both ways
= if we do it right. Perhaps most important, the average user 1s not
» ready to utilize some beautiful state-of-the—art system. He needs ex-
iy perience with tools in general before he will, or can, make use of an
- automated system which he doesn’t understand. There is much to be
sald for crawling before walking.

T 5. It would certainly be nice to have an Ada environment which is as
methodology- independent as posssible. But:

) a. this is an argument for keeping the number of MAPSE tools
- small

b. the need for methodology independence 1is far greater vwhen
locking at the total class of potential users vice the DoD class

c. ANY consistent methcdology, suboptimal as it might (and sure-
ly will) be, is better than NONE (the usual situation now), and
Oy may indeed be better than a combination of (presumably) optim-
): 1zed methodologies within too small an organization.

*.j 6. It 1s useful to think of software environment technology as being in
four tlers:

a. research technology (most appropriate to academia)

b. prototype usage (industrial research/technology groups)

€. well understood, common technology (some usage, especially o

. larger firms) *’

. d. outmoded/outdated methods (the bulk of the community, espe- -

clally DoD) =

. 7. With respect to these tiers, DoD (and much of industry) has its ef- .

. forts in 3 and 4, predominately 4. The crying need is to move all 4~

2 level projects to 3 as soon as possible, and the KIT should be devot- i;-
- 3-290

oy

LA .. .- \'.-.: o'

NN

-

ing most of 1its attention to this goal. Level-3 tochnology., under-
stood, easily-teachable, not-too-drastic a departure is vhat project

8 managers need NOW. Such a move from the technology of the 60's and
70's to that of the 80°'s is consistent with:

a. need

NI

b. maximum cost savings

c. the impetus behind Ada

d. Congressional guidance

e. provision of a vehicle for subsequent improvements.

8. I think that the KIT is likely a victim of its own constitution of
very intelligent, highly competent computer scientists. It is all too
normal to have little interest in that which you consider mundane; to
have too little concern with that part of the world you don't see; to
try to design the best system of which you are capable (vhich may not
be the most cost-effective): and to concentrate on aspects that are
of personal interest to you (and, not incidentally, of sufficient
research interest to permit publication). I think that this may ex-
plain much of the KIT's lack of tangible achievement to date. There
is too much commonality of interests and background, which almost
quarantees that many problems will be viewed within a limited con-
text. In fact, the KIT would benefit from infusion of others with
very diverse backgrounds. What is needed is a broad range of back-
grounds, 1interests, and goals ranging from the very blue sky to the
in-the-trenches users, and everything in betveen.

9. The KIT, and the Ada community, cannot afford to wait for fruition of
a "best possible solution,” which may require "only a few more months
(or years)” of study in order to become feasible on a wide scale.

2

OWN (DISJOINTED) VIEW OF WHAT THE MAPSE/STANDARD TOOL SET SHOULD BE

1. It must be limited, modifiable, substitutable, and expandable. But
modifications must be carefully controlled, determined to be for very
solid reasons, and centrally disseminated. I believe that we need
tool validation for MAPSE tools to ensure that they do AT LEAST
overyth‘“;ng which it has been decided MUST be avallable in the stan-
dard SE.

2. Like Ada itself, the tools must be oriented toward ease of use, re-~
gardless of any added burden this may impose on the developers of the
tools.

AR A
rooe et

St s
. ’

AR

3. I agree that the existing STONEMAN is inadequate, but believe we need
>, an expanded, updated, consolidated revision (a la STRAWMAN, WOODEN-
E' MAN, TINMAN, STEELMAN) rather than a nevw, replacement document.

4. The basic MAPSE must provide a standard set of tools, with a standard

- MINIMAL set of functions which they perform. and a standard, common
command language which can invoke them. Supersets are fine (of tools,

of command language, or of functions performed by a specific tool) SO

LONG AS the basic, reuired tools, functions, and commands are there,

f‘; and the user can be assured that a given command will result in a
N given, known set of transformations. A given environment may have ad-
3-291

ry

P Rl

N

11 SN RN,

S.

ditional tools, tools which do more than their ainimum required func-
tions, and alternative ways of invoking them (to include, perhaps,
self-invoking mechanisms from one tool to the next.) But the basic,
STANDARD mechanisms must be there.

Like a basic bridge bidding system, with additional conventions, my
view of the MAPSE 1is one of a relatively modest set of relatively
simple tools, ALWAYS avallable in ANY Ada environment, which will be
learned by and under stood by ALL Ada developers. Organizations or
individuals can add their own favorite modifications to this base,
but can count on the basic set at all times, and can alwvays revert to
it if desired. Such a scheme should not only maximize transportatbil-
ity of programmers, but also accommodate itself well to various skill
levels within a project or organization. Newer, less experienced per-
sonnel can become productive rapidly by using the more basic (and
known) mechanisms, only gradually extending their utilization to more
exotic features. Older hands can, simultaneously, make use of whatev-
er features their particular (tallored) environment may offer.

3-292

.

A2t Tl Y

ey - C I R T

Bt CAINE L W AP
e -\., \..',‘-In

